6 research outputs found

    Wnt2 and WISP-1/CCN4 induce intimal thickening via promotion of smooth muscle cell migration

    Get PDF
    Objective—Increased vascular smooth muscle cell (VSMC) migration leads to intimal thickening which acts as a soil for atherosclersosis, as well as causing coronary artery restenosis after stenting and vein graft failure. Investigating factors involved in VSMC migration may enable us to reduce intimal thickening and improve patient outcomes. In this study, we determined whether Wnt proteins regulate VSMC migration and thereby intimal thickening. Approach and Results—Wnt2 mRNA and protein expression were specifically increased in migrating mouse aortic VSMCs. Moreover, VSMC migration was induced by recombinant Wnt2 in vitro. Addition of recombinant Wnt2 protein increased Wnt1-inducible signaling pathway protein-1 (WISP-1) mRNA by ≈1.7-fold, via β-catenin/T-cell factor signaling, whereas silencing RNA knockdown of Wnt-2 reduced WISP-1 mRNA by ≈65%. Treatment with rWISP-1 significantly increased VSMC migration by ≈1.5-fold, whereas WISP-1 silencing RNA knockdown reduced migration by ≈40%. Wnt2 and WISP-1 effects were integrin-dependent and not additive, indicating that Wnt2 promoted VSMC migration via WISP-1. Additionally, Wnt2 and WISP-1 were significantly increased and colocated in human coronary arteries with intimal thickening. Reduced Wnt2 and WISP-1 levels in mouse carotid arteries from Wnt2+/− and WISP-1−/− mice, respectively, significantly suppressed intimal thickening in response to carotid artery ligation. In contrast, elevation of plasma WISP-1 via an adenovirus encoding WISP-1 significantly increased intimal thickening by ≈1.5-fold compared with mice receiving control virus. Conclusions—Upregulation of Wnt2 expression enhanced WISP-1 and promoted VSMC migration and thereby intimal thickening. As novel regulators of VSMC migration and intimal thickening, Wnt2 or WISP-1 may provide a potential therapy for restenosis and vein graft failure

    The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour - A Mini-Review

    No full text
    Ageing is a prominent risk factor for atherosclerosis and cardiovascular disease. Vascular smooth muscle cells (VSMCs) are an integral part of atherosclerotic plaque formation, progression and subsequent rupture. Emerging evidence suggests that VSMC behaviour is modified by age, which in turn may affect disease outcome in the elderly. In this review, we discuss the effect of age on VSMC behaviour, proliferation, migration, apoptosis, inflammation, extracellular matrix synthesis and calcification. In addition, we discuss the multiple signalling factors underlying these behavioural changes including angiotensin-II, matrix metalloproteinases, monocyte chemotactic protein-1, and transforming growth factor-β&lt;sub&gt;1&lt;/sub&gt;. Understanding the molecular processes underpinning altered VSMC behaviour with age, may lead to the identification of novel therapeutic targets for suppressing atherosclerosis in the elderly population.</jats:p

    Wnt2 and WISP-1/CCN4 Induce Intimal Thickening via Promotion of Smooth Muscle Cell Migration

    No full text
    Objective: Increased vascular smooth muscle cell (VSMC) migration leads to intimal thickening which acts as a soil for atherosclersosis, as well as causing coronary artery restenosis after stenting and vein graft failure. Investigating factors involved in VSMC migration may enable us to reduce intimal thickening and improve patient outcomes. In this study, we determined whether Wnt proteins regulate VSMC migration and thereby intimal thickening. Approach and Results: Wnt2 mRNA and protein expression were specifically increased in migrating mouse aortic VSMCs. Moreover, VSMC migration was induced by recombinant Wnt2 in vitro. Addition of recombinant Wnt2 protein increased Wnt1-inducible signaling pathway protein-1 (WISP-1) mRNA by ≈1.7-fold, via β-catenin/T-cell factor signaling, whereas silencing RNA knockdown of Wnt-2 reduced WISP-1 mRNA by ≈65%. Treatment with rWISP-1 significantly increased VSMC migration by ≈1.5-fold, whereas WISP-1 silencing RNA knockdown reduced migration by ≈40%. Wnt2 and WISP-1 effects were integrin-dependent and not additive, indicating that Wnt2 promoted VSMC migration via WISP-1. Additionally, Wnt2 and WISP-1 were significantly increased and colocated in human coronary arteries with intimal thickening. Reduced Wnt2 and WISP-1 levels in mouse carotid arteries from Wnt2+/− and WISP-1−/− mice, respectively, significantly suppressed intimal thickening in response to carotid artery ligation. In contrast, elevation of plasma WISP-1 via an adenovirus encoding WISP-1 significantly increased intimal thickening by ≈1.5-fold compared with mice receiving control virus. Conclusions: Upregulation of Wnt2 expression enhanced WISP-1 and promoted VSMC migration and thereby intimal thickening. As novel regulators of VSMC migration and intimal thickening, Wnt2 or WISP-1 may provide a potential therapy for restenosis and vein graft failure

    Wnt5a-Induced Wnt1-Inducible Secreted Protein-1 Suppresses Vascular Smooth Muscle Cell Apoptosis Induced by Oxidative Stress

    No full text
    Objective— Apoptosis of vascular smooth muscle cells (VSMCs) contributes to thinning and rupture of the atherosclerotic plaque fibrous cap and is thereby associated with myocardial infarction. Wnt protein activation of β-catenin regulates numerous genes that are associated with cell survival. We therefore investigated Wnt/β-catenin survival signaling in VSMCs and assessed the presence of this pathway in human atherosclerotic plaques at various stages of the disease process. Approach and Results— Wnt5a induced β-catenin/T-cell factor signaling and retarded oxidative stress (H 2 O 2 )–induced apoptosis in mouse aortic VSMCs. Quantification of mRNA levels revealed a &gt;4-fold ( P &lt;0.05; n=9) increase in the expression of the Wnt/β-catenin responsive gene, Wnt1-inducible secreted protein-1 (WISP-1), which was dependent on cAMP response element–binding protein and sustained in the presence of H 2 O 2 . Exogenous WISP-1 significantly reduced H 2 O 2 –induced apoptosis by 43% ( P &lt;0.05; n=3) and was shown using silencing small interfering RNA, to be important for Wnt5a-dependent survival responses to H 2 O 2 ( P &lt;0.05; n=3). WISP-1 protein levels were significantly lower (≈50%) in unstable atherosclerosis compared with stable plaques (n=11 and n=14). Conclusions— These results indicate for the first time that Wnt5a induces β-catenin survival signaling in VSMCs via WISP-1. The deficiency of the novel survival factor, WISP-1 in intimal VSMCs of unstable coronary plaques, suggests that there is altered Wnt/β-catenin/ T-cell factor signaling with progressive atherosclerosis, and restoration of WISP-1 protein might be an effective stabilization factor for vulnerable atherosclerotic plaques. </jats:sec
    corecore