3 research outputs found

    Classification of genus 2 curves over F2n\mathbb{F}_{2^n} and optimization of their arithmetic

    No full text
    To obtain efficient cryptosystems based on hyperelliptic curves, we studied genus 2 isomorphism classes of hyperelliptic curves in characteristic 2. We found general and optimal form for these curves, just as the short Weierstrass form for elliptic curves. We studied the security and the arithmetic on their jacobian. We also rewrote and optimized the formulas of Lange in characteristic 2, and we introduced a new system of coordinate. Therefore, we deduced the best form of hyperelliptic curves of genus 2 in characteristic 2 to use in cryptography

    Classification of genus 2 curves over F2 n and optimization of their arithmetic

    No full text
    To obtain efficient cryptosystems based on hyperelliptic curves, we studied genus 2 isomorphism classes of hyperelliptic curves in characteristic 2. We found general and optimal form for these curves, just as the short Weierstrass form for elliptic curves. We studied the security and the arithmetic on their jacobian. We also rewrote and optimized the formulas of Lange in characteristic 2, and we introduced a new system of coordinate. Therefore, we deduced the best form of hyperelliptic curves of genus 2 in characteristic 2 to use in cryptography

    Classification of genus 2 curves over F2 n and optimization of their arithmetic

    No full text
    To obtain efficient cryptosystems based on hyperelliptic curves, we studied genus 2 isomorphism classes of hyperelliptic curves in characteristic 2. We found general and optimal form for these curves, just as the short Weierstrass form for elliptic curves. We studied the security and the arithmetic on their jacobian. We also rewrote and optimized the formulas of Lange in characteristic 2, and we introduced a new system of coordinate. Therefore, we deduced the best form of hyperelliptic curves of genus 2 in characteristic 2 to use in cryptography
    corecore