2,196 research outputs found
How do galactic winds affect the Lyalpha forest?
We investigate the effect of galactic winds on the Lyalpha forest in
cosmological simulations of structure and galaxy formation. We combine high
resolution N-body simulations of the evolution of the dark matter with a
semi-analytic model for the formation and evolution of galaxies which includes
detailed prescriptions for the long-term evolution of galactic winds. This
model is the first to describe the evolution of outflows as a two-phase process
(an adiabatic bubble followed by a momentum--driven shell) and to include
metal--dependent cooling of the outflowing material. We find that the main
statistical properties of the Lyalpha forest, namely the flux power spectrum
P(k) and the flux probability distribution function (PDF), are not
significantly affected by winds and so do not significantly constrain wind
models. Winds around galaxies do, however, produce detectable signatures in the
forest, in particular, increased flux transmissivity inside hot bubbles, and
narrow, saturated absorption lines caused by dense cooled shells. We find that
the Lyalpha flux transmissivity is highly enhanced near strongly wind-blowing
galaxies, almost half of all high-redshift galaxies in our sample, in agreement
with the results of Adelberger et al. (2005). Finally, we propose a new method
to identify absorption lines potentially due to wind shells in the Lyalpha
forest: we calculate the abundance of saturated regions in spectra as a
function of region width and we find that the number with widths smaller than
about 1 Angstrom at z=3 and 0.6 Angstrom at z=2 may be more than doubled. This
should be detectable in real spectra.Comment: 14 pages, 11 figures. Minor changes in the text. Accepted for
publication in MNRA
Magnetic Field Seeding by Galactic Winds
The origin of intergalactic magnetic fields is still a mystery and several
scenarios have been proposed so far: among them, primordial phase transitions,
structure formation shocks and galactic outflows. In this work we investigate
how efficiently galactic winds can provide an intense and widespread "seed"
magnetisation. This may be used to explain the magnetic fields observed today
in clusters of galaxies and in the intergalactic medium (IGM). We use
semi-analytic simulations of magnetised galactic winds coupled to high
resolution N-body simulations of structure formation to estimate lower and
upper limits for the fraction of the IGM which can be magnetised up to a
specified level. We find that galactic winds are able to seed a substantial
fraction of the cosmic volume with magnetic fields. Most regions affected by
winds have magnetic fields in the range -12 < Log B < -8 G, while higher seed
fields can be obtained only rarely and in close proximity to wind-blowing
galaxies. These seed fields are sufficiently intense for a moderately efficient
turbulent dynamo to amplify them to the observed values. The volume filling
factor of the magnetised regions strongly depends on the efficiency of winds to
load mass from the ambient medium. However, winds never completely fill the
whole Universe and pristine gas can be found in cosmic voids and regions
unaffected by feedback even at z=0. This means that, in principle, there might
be the possibility to probe the existence of primordial magnetic fields in such
regions.Comment: 14 pages, 5 figures. Accepted for publications by MNRAS. A high
resolution version of the paper is available at
http://astronomy.sussex.ac.uk/~sb207/Papers/bb.ps.g
On Hopf's Lemma and the Strong Maximum Principle
In this paper we consider Hopf's Lemma and the Strong Maximum Principle for
supersolutions to a class of non elliptic equations. In particular we prove a
sufficient condition for the validity of Hopf's Lemma and of the Strong Maximum
Principle and we give a condition which is at once necessary for the validity
of Hopf's Lemma and sufficient for the validity of the Strong Maximum
Principle.Comment: 27 pages,4 figure
Relativistic formulation of coordinate light time, Doppler and astrometric observables up to the second post-Minkowskian order
Given the extreme accuracy of modern space science, a precise relativistic
modeling of observations is required. In particular, it is important to
describe properly light propagation through the Solar System. For two decades,
several modeling efforts based on the solution of the null geodesic equations
have been proposed but they are mainly valid only for the first order
Post-Newtonian approximation. However, with the increasing precision of ongoing
space missions as Gaia, GAME, BepiColombo, JUNO or JUICE, we know that some
corrections up to the second order have to be taken into account for future
experiments. We present a procedure to compute the relativistic coordinate time
delay, Doppler and astrometric observables avoiding the integration of the null
geodesic equation. This is possible using the Time Transfer Function formalism,
a powerful tool providing key quantities such as the time of flight of a light
signal between two point-events and the tangent vector to its null-geodesic.
Indeed we show how to compute the Time Transfer Functions and their derivatives
(and thus range, Doppler and astrometric observables) up to the second
post-Minkowskian order. We express these quantities as quadratures of some
functions that depend only on the metric and its derivatives evaluated along a
Minkowskian straight line. This method is particularly well adapted for
numerical estimations. As an illustration, we provide explicit expressions in
static and spherically symmetric space-time up to second post-Minkowskian
order. Then we give the order of magnitude of these corrections for the
range/Doppler on the BepiColombo mission and for astrometry in a GAME-like
observation.Comment: 22 pages, 5 figures, accepted in Phys. Rev.
Frequency shift up to the 2-PM approximation
A lot of fundamental tests of gravitational theories rely on highly precise
measurements of the travel time and/or the frequency shift of electromagnetic
signals propagating through the gravitational field of the Solar System. In
practically all of the previous studies, the explicit expressions of such
travel times and frequency shifts as predicted by various metric theories of
gravity are derived from an integration of the null geodesic differential
equations. However, the solution of the geodesic equations requires heavy
calculations when one has to take into account the presence of mass multipoles
in the gravitational field or the tidal effects due to the planetary motions,
and the calculations become quite complicated in the post-post-Minkowskian
approximation. This difficult task can be avoided using the time transfer
function's formalism. We present here our last advances in the formulation of
the one-way frequency shift using this formalism up to the
post-post-Minkowskian approximation.Comment: 4 pages, submitted to proceedings of SF2
Light propagation in the field of a moving axisymmetric body: theory and application to JUNO
Given the extreme accuracy of modern space science, a precise relativistic
modeling of observations is required. We use the Time Transfer Functions
formalism to study light propagation in the field of uniformly moving
axisymmetric bodies, which extends the field of application of previous works.
We first present a space-time metric adapted to describe the geometry of an
ensemble of uniformly moving bodies. Then, we show that the expression of the
Time Transfer Functions in the field of a uniformly moving body can be easily
derived from its well-known expression in a stationary field by using a change
of variables. We also give a general expression of the Time Transfer Function
in the case of an ensemble of arbitrarily moving point masses. This result is
given in the form of an integral easily computable numerically. We also provide
the derivatives of the Time Transfer Function in this case, which are mandatory
to compute Doppler and astrometric observables. We particularize our results in
the case of moving axisymmetric bodies. Finally, we apply our results to study
the different relativistic contributions to the range and Doppler tracking for
the JUNO mission in the Jovian system.Comment: 17 pages, 4 figures, submitted to Phys. Rev. D, some corrections
after revie
Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6
The Einstein Equivalence Principle (EEP) is one of the foundations of the
theory of General Relativity and several alternative theories of gravitation
predict violations of the EEP. Experimental constraints on this fundamental
principle of nature are therefore of paramount importance. The EEP can be split
in three sub-principles: the Universality of Free Fall (UFF), the Local Lorentz
Invariance (LLI) and the Local Position Invariance (LPI). In this paper we
propose to use stable clocks in eccentric orbits to perform a test of the
gravitational redshift, a consequence of the LPI. The best test to date was
performed with the Gravity Probe A (GP-A) experiment in 1976 with an
uncertainty of . Our proposal considers the opportunity of
using Galileo satellites 5 and 6 to improve on the GP-A test uncertainty. We
show that considering realistic noise and systematic effects, and thanks to a
highly eccentric orbit, it is possible to improve on the GP-A limit to an
uncertainty around after one year of integration of
Galileo 5 and 6 data.Comment: 13 pages, 5 figures, accepted in Classical and Quantum Gravity as a
Fast Track Communicatio
Construction et installation du LHC
L’installation du LHC a pris, en 2002, une nouvelle dimension avec le début des travaux de la machine en parallèle à ses futures expériences. La première phase des travaux pour le LHC a été la mise en place des services généraux électriques et des tuyauteries d’eau de refroidissement dans le secteur 7/8. Les premières lignes cryogéniques (QRL) seront acheminées au mois de juin. Pour les expériences ALICE et LHC B, après les dernières opérations de démontage, les premiers travaux d’installation des futurs détecteurs ont pu commencer. ATLAS a pu également débuter l’installation de son infrastructure au point 1 avec le début des travaux de charpente dans USA 15. Pour CMS au point 5, la réalisation d’une grande partie de son spectaculaire aimant, est l’objet de nombreuses visites. Le montage des autres parties de son détecteur représentant également une large part d’activité sur d’autres sites
APFELgrid: A high performance tool for parton density determinations
We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and as evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.
Program Summary
Program Title: APFELgrid
Program Files doi: http://dx.doi.org/10.17632/mhwjt5nsg7.1
Licensing provisions: MIT license
Programming language: C++
Nature of problem: Fast computation of hadronic observables under the variation of parton distribution functions.
Solution method: Combination of interpolated weight grids from APPLgrid files and evolution factors from APFEL into efficient FastKernel tables.
External routines/libraries: APPLgrid, APFE
- …