25,238 research outputs found
A computer system to analyze showers in nuclear emulsions: Center Director's discretionary fund report
A system to rapidly digitize data from showers in nuclear emulsions is described. A TV camera views the emulsions though a microscope. The TV output is superimposed on the monitor of a minicomputer. The operator uses the computer's graphics capability to mark the positions of particle tracks. The coordinates of each track are stored on a disk. The computer then predicts the coordinates of each track through successive layers of emulsion. The operator, guided by the predictions, thus tracks and stores the development of the shower. The system provides a significant improvement over purely manual methods of recording shower development in nuclear emulsion stacks
Quantum Spectra of Triangular Billiards on the Sphere
We study the quantal energy spectrum of triangular billiards on a spherical
surface. Group theory yields analytical results for tiling billiards while the
generic case is treated numerically. We find that the statistical properties of
the spectra do not follow the standard random matrix results and their peculiar
behaviour can be related to the corresponding classical phase space structure.Comment: 18 pages, 5 eps figure
Parallel processing methods for space based power systems
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution
Modeling of DC spacecraft power systems
Future spacecraft power systems must be capable of supplying power to various loads. This delivery of power may necessitate the use of high-voltage, high-power dc distribution systems to transmit power from the source to the loads. Using state-of-the-art power conditioning electronics such as dc-dc converters, complex series and parallel configurations may be required at the interface between the source and the distribution system and between the loads and the distribution system. This research will use state-variables to model and simulate a dc spacecraft power system. Each component of the dc power system will be treated as a multiport network, and a state model will be written with the port voltages as the inputs. The state model of a component will be solved independently from the other components using its state transition matrix. A state-space averaging method is developed first in general for any dc-dc switching converter, and then demonstrated in detail for the particular case of the boost power stage. General equations for both steady-state (dc) and dynamic effects (ac) are obtained, from which important transfer functions are derived and applied to a special case of the boost power stage
The Edge of Quantum Chaos
We identify a border between regular and chaotic quantum dynamics. The border
is characterized by a power law decrease in the overlap between a state evolved
under chaotic dynamics and the same state evolved under a slightly perturbed
dynamics. For example, the overlap decay for the quantum kicked top is well
fitted with (with the nonextensive entropic
index and depending on perturbation strength) in the region
preceding the emergence of quantum interference effects. This region
corresponds to the edge of chaos for the classical map from which the quantum
chaotic dynamics is derived.Comment: 4 pages, 4 figures, revised version in press PR
High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase
In this paper the evolution of a quantum system drived by a non-Hermitian
Hamiltonian depending on slowly-changing parameters is studied by building an
universal high-order adiabatic approximation(HOAA) method with Berry's phase
,which is valid for either the Hermitian or the non-Hermitian cases. This
method can be regarded as a non-trivial generalization of the HOAA method for
closed quantum system presented by this author before. In a general situation,
the probabilities of adiabatic decay and non-adiabatic transitions are
explicitly obtained for the evolution of the non-Hermitian quantum system. It
is also shown that the non-Hermitian analog of the Berry's phase factor for the
non-Hermitian case just enjoys the holonomy structure of the dual linear bundle
over the parameter manifold. The non-Hermitian evolution of the generalized
forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page
Geometric gauge potentials and forces in low-dimensional scattering systems
We introduce and analyze several low-dimensional scattering systems that
exhibit geometric phase phenomena. The systems are fully solvable and we
compare exact solutions of them with those obtained in a Born-Oppenheimer
projection approximation. We illustrate how geometric magnetism manifests in
them, and explore the relationship between solutions obtained in the diabatic
and adiabatic pictures. We provide an example, involving a neutral atom dressed
by an external field, in which the system mimics the behavior of a charged
particle that interacts with, and is scattered by, a ferromagnetic material. We
also introduce a similar system that exhibits Aharonov-Bohm scattering. We
propose some practical applications. We provide a theoretical approach that
underscores universality in the appearance of geometric gauge forces. We do not
insist on degeneracies in the adiabatic Hamiltonian, and we posit that the
emergence of geometric gauge forces is a consequence of symmetry breaking in
the latter.Comment: (Final version, published in Phy. Rev. A. 86, 042704 (2012
Semiclassical analysis of a complex quartic Hamiltonian
It is necessary to calculate the C operator for the non-Hermitian
PT-symmetric Hamiltonian H=\half p^2+\half\mu^2x^2-\lambda x^4 in order to
demonstrate that H defines a consistent unitary theory of quantum mechanics.
However, the C operator cannot be obtained by using perturbative methods.
Including a small imaginary cubic term gives the Hamiltonian H=\half p^2+\half
\mu^2x^2+igx^3-\lambda x^4, whose C operator can be obtained perturbatively. In
the semiclassical limit all terms in the perturbation series can be calculated
in closed form and the perturbation series can be summed exactly. The result is
a closed-form expression for C having a nontrivial dependence on the dynamical
variables x and p and on the parameter \lambda.Comment: 4 page
Adiabatic pumping in a Superconductor-Normal-Superconductor weak link
We present a formalism to study adiabatic pumping through a superconductor -
normal - superconductor weak link. At zero temperature, the pumped charge is
related to the Berry phase accumulated, in a pumping cycle, by the Andreev
bound states. We analyze in detail the case when the normal region is short
compared to the superconducting coherence length. The pumped charge turns out
to be an even function of the superconducting phase difference. Hence, it can
be distinguished from the charge transferred due to the standard Josephson
effect.Comment: 4 pages, 2 figures; Fig. 2 replaced, minor changes in the tex
Changing our Tune: Scoping the potential of the Australian music industry to address climate change
This report summarises the results of a Climate Action and Engagement Scoping Study conducted by the Institute for Sustainable Futures for Green Music Australia. The research provides a snapshot of the Australian music industry’s impact, level of awareness and opportunities for improvement with regards to sustainability and climate action
- …