149 research outputs found
Stem Cells for Lung Cancer?
Stem cells are believed to be crucial players in tumor development. There is much interest in identifying those compartments that harbor stem cells involved in lung cancer, given the high incidence and recurrence rate of this disease. In this issue of Cell, Kim and colleagues describe a niche in the bronchioalveolar duct junction of adult mouse lung that harbors stem cells from which adenocarcinomas are likely to arise (Kim et al., 2005). They enriched, propagated, and differentiated these stem cells in vitro and found that they were activated by the oncogenic protein K-ras. This study provides exciting insights into how the stem cell compartment operates during both normal lung-tissue homeostasis and the development of lung cancer. The new work offers perspectives on possible therapeutic interventions to combat lung cancer
A tRNA with Oncogenic Capacity
Overexpression of Brf1, a transcription factor of the RNA polymerase III apparatus, can transform cells in vitro and cause tumor formation in vivo. Marshall et al. (2008) now show that one of the transcriptional products of RNA polymerase III, the initiator tRNAMet, mediates this effect, revealing an unexpected role for this tRNA in tumorigenesis
Wnt Down, Tumors Wind Up?
In mouse intestinal tumors induced by the inhibition of APC, the restoration of APC function causes complete tumor regression with normal differentiation and return of stem cell function irrespective of whether tumors also carried mutations in Kras and p53. These findings by Dow et al. validate the Wnt pathway as an exquisite target for intervention
Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model
AbstractSmall cell lung cancer (SCLC) is a highly aggressive human tumor with a more than 95% mortality rate. Its ontogeny and molecular pathogenesis remains poorly understood. We established a mouse model for neuroendocrine (NE) lung tumors by conditional inactivation of Rb1 and Trp53 in mouse lung epithelial cells. Mice carrying conditional alleles for both Rb1 and Trp53 developed with high incidence aggressive lung tumors with striking morphologic and immunophenotypic similarities to SCLC. Most of these tumors, which we designate MSCLC (murine small cell lung carcinoma), diffusely spread through the lung and gave rise to extrapulmonary metastases. In our model, inactivation of both Rb1 and p53 was a prerequisite for the pathogenesis of SCLC
Engaging European society at the forefront of cancer research and care
Cancer prevention; Cancer research; PolicyPrevenciĂł del cĂ ncer; Recerca del cĂ ncer; PolĂticaPrevenciĂłn del cáncer; InvestigaciĂłn del cáncer; PolĂticaEuropean cancer research stakeholders met in October 2022 in Heidelberg, Germany, at the 5th Gago conference on European Cancer Policy, to discuss the current cancer research and cancer care policy landscape in Europe. Meeting participants highlighted gaps in the existing European programmes focusing on cancer research, including Europe's Beating Cancer Plan (EBCP), the Mission on Cancer (MoC), Understanding Cancer (UNCAN.eu), and the joint action CRANE, and put forward the next priorities, in the form of the Heidelberg Manifesto for cancer research. This meeting report presents all discussions that shed light on how infrastructures can be effectively shaped for translational, prevention, clinical and outcomes cancer research, with a focus on implementation and sustainability and while engaging patients and the public. In addition, we summarize recommendations on how to introduce frameworks for the digitalization of European cancer research. Finally, we discuss what structures, commitment, and resources are needed to establish a collaborative cancer research environment in Europe to achieve the scale required for innovation.Research discussed by Elena Garralda has been funded by CaixaResearch Advanced Oncology Research Program supported by FundaciĂł La Caixa (LCF/PR/CE07/50610001) and by the European Union under grant agreements no. 965397 (CC-DART) and 101079984 (PCM4EU)
Gene expression regulation by the Chromodomain helicase DNA-binding protein 9 (CHD9) chromatin remodeler is dispensable for murine development.
Chromodomain helicase DNA-binding (CHD) chromatin remodelers regulate transcription and DNA repair. They govern cell-fate decisions during embryonic development and are often deregulated in human pathologies. Chd1-8 show upon germline disruption pronounced, often developmental lethal phenotypes. Here we show that contrary to Chd1-8 disruption, Chd9-/-animals are viable, fertile and display no developmental defects or disease predisposition. Germline deletion of Chd9 only moderately affects gene expression in tissues and derived cells, whereas acute depletion in human cancer cells elicits more robust changes suggesting that CHD9 is a highly context-dependent chromatin regulator that, surprisingly, is dispensable for mouse development
The Porto European Cancer Research Summit 2021
Ensayos clĂnicos/preventivos; Centros integrales del cáncer; InvestigaciĂłn de resultadosAssaigs clĂnics/preventius; Centres integrals del cĂ ncer; Recerca de resultatsClinical/prevention trials; Comprehensive cancer centres; Outcomes researchKey stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures – namely translational research, clinical/prevention trials and outcomes research – were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost
The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung
IntroductionBecause small-cell lung carcinomas (SCLC) are seldom resected, human materials for study are limited. Thus, genetically engineered mouse models (GEMMs) for SCLC and other high-grade lung neuroendocrine (NE) carcinomas are crucial for translational research.MethodsThe pathologies of five GEMMs were studied in detail and consensus diagnoses reached by four lung cancer pathology experts. Hematoxylin and Eosin and immunostained slides of over 100 mice were obtained from the originating and other laboratories and digitalized. The GEMMs included the original Rb/p53 double knockout (Berns Laboratory) and triple knockouts from the Sage, MacPherson, and Jacks laboratories (double knockout model plus loss of p130 [Sage laboratory] or loss of Pten [MacPherson and Jacks laboratories]). In addition, a GEMM with constitutive co-expression of SV40 large T antigen and Ascl1 under the Scgb1a1 promoter from the Linnoila laboratory were included.ResultsThe lung tumors in all of the models had common as well as distinct pathological features. All three conditional knockout models resulted in multiple pulmonary tumors arising mainly from the central compartment (large bronchi) with foci of in situ carcinoma and NE cell hyperplasia. They consisted of inter- and intra-tumor mixtures of SCLC and large-cell NE cell carcinoma in varying proportions. Occasional adeno- or large-cell carcinomas were also seen. Extensive vascular and lymphatic invasion and metastases to the mediastinum and liver were noted, mainly of SCLC histology. In the Rb/p53/Pten triple knockout model from the MacPherson and Jacks laboratories and in the constitutive SV40/T antigen model many peripherally arising non–small-cell lung carcinoma tumors having varying degrees of NE marker expression were present (non–small-cell lung carcinoma-NE tumors). The resultant histological phenotypes were influenced by the introduction of specific genetic alterations, by inactivation of one or both alleles of specific genes, by time from Cre activation and by targeting of lung cells or NE cell subpopulations.ConclusionThe five GEMM models studied are representative for the entire spectrum of human high-grade NE carcinomas and are also useful for the study of multistage pathogenesis and the metastatic properties of these tumors. They represent one of the most advanced forms of currently available GEMM models for the study of human cancer
The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung
Introduction: Because small-cell lung carcinomas (SCLC) are seldom resected, human materials for study are limited. Thus, genetically engineered mouse models (GEMMs) for SCLC and other high-grade lung neuroendocrine (NE) carcinomas are crucial for translational research. Methods: The pathologies of five GEMMs were studied in detail and consensus diagnoses reached by four lung cancer pathology experts. Hematoxylin and Eosin and immunostained slides of over 100 mice were obtained from the originating and other laboratories and digitalized. The GEMMs included the original Rb/p53 double knockout (Berns Laboratory) and triple knockouts from the Sage, MacPherson, and Jacks laboratories (double knockout model plus loss of p130 [Sage laboratory] or loss of Pten [MacPherson and Jacks laboratories]). In addition, a GEMM with constitutive co-expression of SV40 large T antigen and Ascl1 under the Scgb1a1 promoter from the Linnoila laboratory were included. Results: The lung tumors in all of the models had common as well as distinct pathological features. All three conditional knockout models resulted in multiple pulmonary tumors arising mainly from the central compartment (large bronchi) with foci of in situ carcinoma and NE cell hyperplasia. They consisted of inter- and intra-tumor mixtures of SCLC and large-cell NE cell carcinoma in varying proportions. Occasional adeno- or large-cell carcinomas were also seen. Extensive vascular and lymphatic invasion and metastases to the mediastinum and liver were noted, mainly of SCLC histology. In the Rb/p53/Pten triple knockout model from the MacPherson and Jacks laboratories and in the constitutive SV40/T antigen model many peripherally arising non-small-cell lung carcinoma tumors having varying degrees of NE marker expression were present (non-small-cell lung carcinoma-NE tumors). The resultant histological phenotypes were influenced by the introduction of specific genetic alterations, by inactivation of one or both alleles of specific genes, by time from Cre activation and by targeting of lung cells or NE cell subpopulations. Conclusion: The five GEMM models studied are representative for the entire spectrum of human high-grade NE carcinomas and are also useful for the study of multistage pathogenesis and the metastatic properties of these tumors. They represent one of the most advanced forms of currently available GEMM models for the study of human cancer. Key Words: Neuroendocrine carcinomas; Small-cell lung carcinoma; Lung carcinoma; Non–small-cell lung cancer; Genetically engineered mouse models; Patholog
miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway
Background: Drug resistance hampers the efficient treatment of malignancies, including advanced stage ovarian cancer, which has a 5-year survival rate of only 30 %. The molecular processes underlying resistance have been extensively studied, however, not much is known about the involvement of microRNAs. Methods: Differentially expressed microRNAs between cisplatin sensitive and resistant cancer cell line pairs were determined using microarrays. Mimics were used to study the role of microRNAs in drug sensitivity of ovarian cancer cell lines and patient derived tumor cells. Luciferase reporter constructs were used to establish regulation of target genes by microRNAs. Results: MiR-634 downregulation was associated with cisplatin resistance. Overexpression of miR-634 affected cell cycle progression and enhanced apoptosis in ovarian cancer cells. miR-634 resensitized resistant ovarian cancer cell lines and patient derived drug resistant tumor cells to cisplatin. Similarly, miR-634 enhanced the response to carboplatin and doxorubicin, but not to paclitaxel. The cell cycle regulator CCND1, and Ras-MAPK pathway components GRB2, ERK2 and RSK2 were directly repressed by miR-634 overexpression. Repression of the Ras-MAPK pathway using a MEK inhibitor phenocopied the miR-634 effects on viability and chemosensitivity. Conclusion:miR-634 levels determine chemosensitivity in ovarian cancer cells. We identify miR-634 as a therapeutic candidate to resensitize chemotherapy resistant ovarian tumors
- …