38 research outputs found

    Modelling end-pumped solid state lasers

    Get PDF
    The operation dynamics of end-pumped solid-state lasers are investigated by means of a spatially resolved numerical rate-equation model and a time-dependent analytical thermal model. The rate-equation model allows the optimization of parameters such as the output coupler transmission and gain medium length, with the aim of improving the laser output performance. The time-dependent analytical thermal model is able to predict the temperature and the corresponding induced thermal stresses on the pump face of quasi-continuous wave (qcw) end-pumped laser rods. Both models are found to be in very good agreement with experimental results

    Narrow-Linewidth Distributed Feedback Channel Waveguide Laser in Al2_2O3_3:Er3+^{3+}

    Get PDF
    We report on the fabrication and characterization of a distributed feedback channel waveguide laser in erbium-doped aluminium oxide on a standard thermally oxidized silicon substrate. Holographically-written surface-relief Bragg gratings have been integrated with the aluminium oxide waveguides via reactive ion etching of a silicon dioxide overlay film. The laser operates at a wavelength of 1545.2 nm and exhibits a threshold of 2.2 mW absorbed pump power, while it produces a maximum output power of 3 mW. The emission is TE polarized and has a Lorentzian linewidth of 1.70±0.58 kHz, which corresponds to a Q-factor of 1.14×E11

    High-Q distributed-Bragg-grating laser cavities

    Get PDF
    Applying Bragg gratings in Al2O3 channel waveguides, we demonstrate distributed Bragg reflectors with Q-factors of 1.02x10e6. An integrated Al2O3:Yb3+ waveguide laser with 67% slope efficiency and 47 mW output power is achieved with such cavities

    Ultra-high, broadband gain in a lattice-engineered, Yb-doped double tungstate channel waveguide

    Get PDF
    150 dB/cm gain over 55 nm wavelength range between 977-1032 nm is obtained in a 47.5% Yb-doped potassium double tungstate waveguide amplifier. The dependence of luminescence lifetime and gain on Yb concentration is investigated

    Single-Frequency, Narrow-Linewidth Distributed Feedback Waveguide Laser in Al2O3:Er3+ on Silicon

    Get PDF
    A distributed feedback channel waveguide laser in erbium-doped aluminum oxide on a silicon substrate is reported. The optically pumped laser has a threshold pump power of 15 mW and emits 3 mW in single-frequency operation at 1545.2 nm wavelength with a slope efficiency of 6.2% and linewidth of 15 kHz

    On-chip integrated amplifiers and lasers utilizing rare-earth-ion activation

    Get PDF
    This contribution reviews our recent results on rare-earth-ion-doped integrated amplifiers and lasers. We have concentrated our efforts on complex-doped polymers, amorphous Al2O3, and crystalline potassium double tungstates

    Integrated Al2O3:Er3+ microring and distributed feedback lasers on silicon

    Get PDF
    Integrated rare-earth-ion-doped dielectric lasers have found\ud numerous applications in the medical, scientific, military and industrial fields, thanks to their high stability, low noise, narrow linewidth emission and broad wavelength tunability. Its favorable optical properties and compatibility with existing silicon waveguide technology make rare-earth-ion-doped aluminum oxide (Al2O3) a very promising gain medium to realize such integrated lasers.\ud Al2O3:Er3+ waveguide lasers are of interest due to their emission near 1.55 μm in the telecommunication C-band. The fabrication of low-loss Al2O3:Er3+ waveguides and internal optical gain over an 80-nm wavelength range with a peak gain of 2.0 dB/cm enabled the realization of various integrated Al2O3:Er3+ lasers on standard thermally oxidized silicon substrates. We report on the fabrication and performance of optically pumped channel waveguide ring and distributed feedback (DFB) lasers in Al2O3:Er3+. The low threshold ring-cavity lasers provide laser wavelength selection in the range 1530–1557 nm when varying the length of the output coupler from the ring. The DFB lasers exhibit output powers of more than 3 mW with slope efficiencies as high as 6.2% in single-frequency operation at 1545.2 nm with\ud linewidths below 15 kHz. These performance data illustrate the significance of Al2O3:Er3+ as a laser gain medium in dense wavelength division multiplexing in telecommunication networks

    The impact of lifetime quenching on relaxation oscillations in solid-state lasers

    Get PDF
    We show that the expression for the relaxation frequency in rare-earth-ion doped solid-state lasers needs to be modified when dealing with materials that suffer from lifetime quenching

    Highly efficient distributed feedback waveguide laser in Al2O3:Yb3+ on silicon

    No full text
    The realization of the first ytterbium-doped aluminum oxide distributed feedback channel waveguide laser is reported. The low threshold laser emits 34 mW in single-frequency operation at 1022.2 nm wavelength with a slope efficiency of 67%
    corecore