438 research outputs found
Long-Term Memory Motion-Compensated Prediction
Long-term memory motion-compensated prediction extends the spatial displacement vector utilized in block-based hybrid video coding by a variable time delay permitting the use of more frames than the previously decoded one for motion compensated prediction. The long-term memory covers several seconds of decoded frames at the encoder and decoder. The use of multiple frames for motion compensation in most cases provides significantly improved prediction gain. The variable time delay has to be transmitted as side information requiring an additional bit rate which may be prohibitive when the size of the long-term memory becomes too large. Therefore, we control the bit rate of the motion information by employing rate-constrained motion estimation. Simulation results are obtained by integrating long-term memory prediction into an H.263 codec. Reconstruction PSNR improvements up to 2 dB for the Foreman sequence and 1.5 dB for the Mother–Daughter sequence are demonstrated in comparison to the TMN-2.0 H.263 coder. The PSNR improvements correspond to bit-rate savings up to 34 and 30%, respectively. Mathematical inequalities are used to speed up motion estimation while achieving full prediction gain
Distributed Rate Allocation Policies for Multi-Homed Video Streaming over Heterogeneous Access Networks
We consider the problem of rate allocation among multiple simultaneous video
streams sharing multiple heterogeneous access networks. We develop and evaluate
an analytical framework for optimal rate allocation based on observed available
bit rate (ABR) and round-trip time (RTT) over each access network and video
distortion-rate (DR) characteristics. The rate allocation is formulated as a
convex optimization problem that minimizes the total expected distortion of all
video streams. We present a distributed approximation of its solution and
compare its performance against H-infinity optimal control and two heuristic
schemes based on TCP-style additive-increase-multiplicative decrease (AIMD)
principles. The various rate allocation schemes are evaluated in simulations of
multiple high-definition (HD) video streams sharing multiple access networks.
Our results demonstrate that, in comparison with heuristic AIMD-based schemes,
both media-aware allocation and H-infinity optimal control benefit from
proactive congestion avoidance and reduce the average packet loss rate from 45%
to below 2%. Improvement in average received video quality ranges between 1.5
to 10.7 dB in PSNR for various background traffic loads and video playout
deadlines. Media-aware allocation further exploits its knowledge of the video
DR characteristics to achieve a more balanced video quality among all streams.Comment: 12 pages, 22 figure
RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding
We present a new hierarchical compression scheme for encoding light field
images (LFI) that is suitable for interactive rendering. Our method (RLFC)
exploits redundancies in the light field images by constructing a tree
structure. The top level (root) of the tree captures the common high-level
details across the LFI, and other levels (children) of the tree capture
specific low-level details of the LFI. Our decompressing algorithm corresponds
to tree traversal operations and gathers the values stored at different levels
of the tree. Furthermore, we use bounded integer sequence encoding which
provides random access and fast hardware decoding for compressing the blocks of
children of the tree. We have evaluated our method for 4D two-plane
parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per
pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR
quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI
are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new
views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to
implement and involves only bit manipulations and integer arithmetic
operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and
Games (I3D '19
- …