13 research outputs found
Impacts of a Recurrent Resuspension Event and Variable Phytoplankton Community Composition On Remote Sensing Reflectance
In order to characterize the impact of turbidity plumes on optical and biological dynamics, a suite of environmental parameters were measured in southern Lake Michigan during the springtime recurrent sediment plume. In-water measurements of inherent optical properties (IOPs) were entered into the Hydrolight 4.2 radiative transfer model and the output was compared with measured apparent optical properties (AOPs) across a wide range of optical conditions. Hydrolight output and measured underwater light fields were then used to clarify the effects of the sediment plume on primary production, phytoplankton community composition, and nearshore remote sensing ocean color algorithms. Our results show that the sediment plume had a negligible effect on the spectral light environment and phytoplankton physiology. The plume did not significantly alter the spectral quality of available light and did not lead to light limited phytoplankton populations compared to non-plume conditions. Further, the suspended sediment in the plume did not seriously impact the performance of ocean color algorithms. We evaluated several currently employed chlorophyll algorithms and demonstrated that the main factor compromising the efficacy of these algorithms was the composition of phytoplankton populations. As phycobilin-containing algae became the dominant species, chlorophyll algorithms that use traditional blue/green reflectance ratios were compromised due to the high absorption of green light by phycobilin pigments. This is a notable difficulty in coastal areas, which have highly variable phytoplankton composition and are often dominated by sharp fronts of phycobilin and non-phycobilin containing algae
Why should we measure the optical backscattering coefficient?
In recent years commercial sensors for in situ determinations of optical backscattering coefficient, bb, have become available. The small size and low power requirements of these sensors permit deployment from small sensing platforms such as autonomous underwater vehicles, in addition to standard profiling packages. Given their rapid sampling time (sub second) they can collect data with high temporal and spatial resolution (sub meter).
While these are attractive features of any sensor they do not answer the question: why should oceanographers measure bb?
The short answer is that bb carries useful information about seawater constituents that scatter light. The potential to derive information about the abundance and the types of suspended marine particles, which play different roles in ocean ecosystems and biogeochemical cycling, is particularly attractive. To first order, the bb coefficient is a proxy for particle abundance but it also depends significantly on particle size distribution and particle composition, for example, on relative proportions of small and larger particles or on whether the particles are organic or inorganic. Most importantly, however, the spectral reflectance of the ocean (known as ocean color) is, to first order, proportional to bb. The measurements of ocean color from remote optical sensors on satellites provide a unique capability to monitor surface ocean properties (e.g., chlorophyll concentration and biological primary productivity) over extended spatial and temporal scales. Measurements and fundamental understanding of bb are required for understanding and successful applications of remotely sensed ocean color
Spring Phytoplankton Photosynthesis, Growth, and Primary Production and Relationships to a Recurrent Coastal Sediment Plume and River Inputs in Southeastern Lake Michigan
[1] A recurrent coastal sediment plume (RCP) is an episodic event in the southern basin of Lake Michigan that typically coincides with the spring diatom bloom. Strong winter storm activity during El Nino conditions in 1998 resulted in a large and intense RCP event. Consistently higher values of the light-saturated rate of photosynthesis, P-max(B), were observed in spring 1998 compared to 1999 and 2000. Higher values of P-max(B) in 1998 appeared to be related to increased availability of phosphorus, as evidenced by significant correlations of P-max(B) with soluble reactive phosphorus (SRP). Light-saturated growth rates were also significantly correlated with SRP concentrations. These findings were consistent the view that the RCP was a source of enrichment. However, incubation experiments involving lake water enriched with sediments showed relatively small increases in growth and photosynthetic parameters, while enrichments with river water exhibited elevated rates. This result, along with increased levels of river discharge in 1998 and high levels of dissolved phosphorus in river water, supported the view that riverine inputs rather than the RCP were responsible for the higher photosynthetic parameters and growth seen for coastal margin assemblages. Despite the higher levels of P-max(B) in 1998, model analyses revealed that reduced light availability resulting from the intense RCP event constrained phytoplankton growth rates and primary production during this season and apparently suppressed the development of a typical spring bloom. These findings indicate a potential for reduced ecosystem productivity in response to extreme storm events, the frequency of which may increase with projected long-term climate changes
VARIABILITY IN THE BACKSCATTERING TO SCATTERING AND F/Q RATIOS OBSERVED IN NATURAL WATERS
, examine the spectral variability of the ratio and examine the variability in different water types related to the changes in the Volume Scattering Function (VSF). In addition, we estimate the T*f/Q (Mobley 9 ) term from above-water measurements of remote sensing reflectance (Rrs) coupled with direct measurements of absorption (a) and backscattering (b b ) coefficients. We will examine the spectral dependence of the T*f/Q term and its relationship to the b b /b ratio, which we use as a substitute for the changing VSF. Finally, we will show how the estimated T*f/Q values vary from the commonly used value of 0.051 used for satellite processing
Variability in Measured and Modelled Remote Sensing Reflectance for Coastal Waters at LEO-5
A large database of in situ bio-optical measurements were collected at the LEO-15 (Long-term Ecosystem Observatory) off the southern coast of New Jersey, USA. The data were used to quantify the impact of coastal upwelling on near-shore bulk apparent (AOP) and inherent (IOP) optical properties. There was good qualitative agreement between the AOPs and IOPs in space and time. The measured IOPs were used as inputs to the Hydrolight radiative transfer model (RTE). Estimated spectral AOPs from the RTE were strongly correlated (generally R2\u3e0.80) to measured AOPs. If optical closure between in-water measurements was achieved then the RTE was used to construct the spectral remote sensing reflectance. The modelled remote sensing reflectances were compared to satellite-derived reflectance estimates from four different algorithms. Quantitative agreement between the satellite-measured and in-water modelled remote sensing reflectance was good but results were variable between the different models. The strength of the correlation and spectral consistency was variable with space and time. Correlations were strongest in clear offshore waters and lowest in the near-shore turbid waters. In the near-shore waters, the correlation was strongest for blue wavelengths (400-555 nm) but lower for the red wavelengths of light
Deriving In Situ Phytoplankton Absorption for Bio-Optical Productivity Models in Turbid Waters
As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high-resolution hydrographic and bio-optical data set was collected from two cabled profilers at the Long-Term Ecosystem Observatory (LEO). Upwelling-and downwelling-favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine-wavelength absorption/attenuation meter (ac-9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac-9. Derived mean spectral absorption of phytoplankton was used in a bio-optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio-optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (Фmax) and the irradiance light-saturation parameter (Ek(PAR)). An analysis of available data shows that Фmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water-column-integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio-optical models in turbid coastal waters given the measurements of the bulk inherent optical properties
Variability in Spectral Backscatter Estimated from Satellites and its Relation to \u3cem\u3ein situ\u3c/em\u3e Measurements in Optically Complex Coastal Waters
A large database of in situ bio-optical measurements was collected at the Long-term Ecosystem Observatory off the southern coast of New Jersey, USA. In part, the research effort focused on reconciling in situ estimates with satellite-derived estimates of the inherent optical properties (IOP). At 442 nm, in situ absorption values ranged from less than 0.2 to over 1.5 inverse metres. Satellite estimates of backscatter ranged from 0.002 to 0.03 inverse metres at 442 nm and showed significant variability in time and space during July 1999, reflecting the recurrent high frequency events that characterize the region—wind-mixing, storms and coastal upwelling. Despite this variability, there was good qualitative agreement between the satellite derived IOP estimates and in situ IOP measurements. Both absorption and backscatter values increased near-shore, reflecting enhanced concentrations of phytoplankton, sediments and dissolved organic matter
Episodic Physical Forcing and the Structure of Phytoplankton Communities in the Coastal Waters of New Jersey
The high variability in physical, biological, and chemical properties in coastal waters have limited our ability to sample the appropriate timescale and space scale to resolve physical forcing of the ecosystem. To improve our understanding, a multiplatform adaptive sampling program at the Long-term Ecosystem Observatory(LEO-15) off the coast of New Jersey examined the relationship between episodic summertime upwelling and downwelling events and the corresponding dynamics in bulk phytoplankton biomass and community structure. Inherent and apparent optical properties were concurrently measured to evaluate the use of optics to improve future sampling coverage in coastal regions. Results indicate peak chlorophyll biomass tracked the maximum density gradient and that increasing surface phytoplankton biomass was associated with decreasing stratification offshore over time. Diatoms dominated the study site; however, significant shifts in cyanobacteria and dinoflagellate communities were observed. Dinoflagellate and cyanobacteria communities responded inversely to episodic events, with cyanobacteria being favored during intense downwelling. Differences in phytoplankton absorption properties significantly changed the corresponding in water inherent optical properties, allowing for characterization of the community structure from measurements of above water hyperspectral reflectance
Why Should We Measure the Optical Backscattering Coefficient?
In recent years commercial sensors for in situ determinations of optical backscattering coefficient, bb, have become available. The small size and low power requirements of these sensors permit deployment from small sensing platforms such as autonomous underwater vehicles, in addition to standard profiling packages. Given their rapid sampling time (sub second) they can collect data with high temporal and spatial resolution (sub meter).
While these are attractive features of any sensor they do not answer the question: why should oceanographers measure bb?
The short answer is that bb carries useful information about seawater constituents that scatter light. The potential to derive information about the abundance and the types of suspended marine particles, which play different roles in ocean ecosystems and biogeochemical cycling, is particularly attractive. To first order, the bb coefficient is a proxy for particle abundance but it also depends significantly on particle size distribution and particle composition, for example, on relative proportions of small and larger particles or on whether the particles are organic or inorganic. Most importantly, however, the spectral reflectance of the ocean (known as ocean color) is, to first order, proportional to bb. The measurements of ocean color from remote optical sensors on satellites provide a unique capability to monitor surface ocean properties (e.g., chlorophyll concentration and biological primary productivity) over extended spatial and temporal scales. Measurements and fundamental understanding of bb are required for understanding and successful applications of remotely sensed ocean color
The Long-term Ecosystem Observatory: An Integrated Coastal Observatory
An integrated ocean observatory has been developed and operated in the coastal waters off the central coast of New Jersey, USA. One major goal for the Long-term Ecosystem Observatory (LEO) is to develop a real-time capability for rapid environmental assessment and physical/biological forecasting in coastal waters. To this end, observational data are collected from satellites, aircrafts, ships, fixed/relocatable moorings and autonomous underwater vehicles. The majority of the data are available in real-time allowing for adaptive sampling of episodic events and are assimilated into ocean forecast models. In this observationally rich environment, model forecast errors are dominated by uncertainties in the model physics or future boundary conditions rather than initial conditions. Therefore, ensemble forecasts with differing model parameterizations provide a unique opportunity for model refinement and validation. The system has been operated during three annual coastal predictive skill experiments from 1998 through 2000. To illustrate the capabilities of the system, case studies on coastal upwelling and small-scale biological slicks are discussed. This observatory is one part of the expanding network of ocean observatories that will form the basis of a national observation network