885 research outputs found
Final Design Report: Design and Development of an Ackermann Steering Geometry for a Formula SAE Car
The steering system was designed to be implemented in Trinity’s Formula SAE racecar. All design choices were made first with respect to the FSAE rules and then to the team’s production capabilities (manufacturing skill level and the limitations of Trinity’s machine shop equipment). The system was first evaluated by its compliance with FSAE rules: limited degrees of free play, quick release safety compliance, and the clearance of the cockpit template, front uprights, and wheel rims. The next feature that was evaluated was the car’s ability to navigate a hairpin turn. The steering system was evaluated by its toe in/out, steering ratio, and Ackermann percentage. At low speeds, Ackerman geometries improve the cornering ability in fast, technical tracks.
Test 1 evaluated the free play present in the steering system. FSAE mandates that there be no greater than 7 degrees of free play. The car successfully passed Test 1 revealing that on average there are only 5 degrees of free play in the steering system. Test 2 assessed the car’s ability to navigate both clockwise and counterclockwise hairpin turns by comparing the actual operating range with previously computed minimum inner and outer toe angles. The operating angles exceeded the minimum steering angles; therefore, the car should be able to navigate all turns in the Autocross and Skidpad events. Test 3 was designed to mimic the track at the annual FSAE competition. The powertrain subsystem remains incomplete, so the car is to be pushed by design team members while another member steers the vehicle. Due to a recent unexpected break in the left front A-arm of the suspension, Test 3 has not been performed. Test 4 assessed the function of the quick release, cockpit ergonomics, and the ability of a driver to safely exit the vehicle in 9 seconds. Thirty trials by three different drivers demonstrate the success of the quick release feature and the ability to exit the vehicle in far less than 9 seconds.
A primary objective of this senior design project was to meet FSAE guidelines and create a robust system that can be optimized by future senior design teams. Given that the steering system passed the 3 tests that were performed, it is clear that we have produced a working steering system that will provide a strong basis for the next team that continues to prepare the car for competition. Another objective was to produce the car while cognizant of the different FSAE events that the TUMS car will eventually compete in. Two other objectives were to follow a thorough design process for the steering system and to maintain records of design decisions, engineering drawings, and inventory for future students who will work on the car. Throughout the process the team kept organized notes on materials, vendors, purchases, and decisions. Two more objectives were to fabricate and assemble the steering system and implement a placeholder for the incomplete suspension system. Both objectives were met: the steering system is complete and two wooden blocks were placed next to the uprights to support the car in lieu of a function suspension system for testing.. A final primary objective was to dynamically test the steering system (Test 3), but this was not met. Several welds must be repaired before Test 3 can be safely performed. All welds on the suspension and powertrain should be evaluated and strengthened if needed before dynamic testing should proceed.
A secondary objective (not formally evaluated) was to manage the implementation of a braking system to be completed by the current TUMS members. All components of the braking system have been ordered and received. There is a plan for the assembly, but there were not as many active and available TUMS members as anticipated so it has not been completed. To achieve a fully-implemented braking system, all parts should be assembled and plumbing lines purchased and strategically attached. The final goal was to integrate and complete as much of the previously designed subsystems as possible (powertrain, suspension, electronics, etc.). Much research and many steps have been taken towards this objective, but there is a significant future work necessary to achieve a running powertrain and integrated, functional car
Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects
The role of dimensionality (Euclidean versus fractal), spatial extent,
boundary effects and system topology on the efficiency of diffusion-reaction
processes involving two simultaneously-diffusing reactants is analyzed. We
present numerically-exact values for the mean time to reaction, as gauged by
the mean walklength before reactive encounter, obtained via application of the
theory of finite Markov processes, and via Monte Carlo simulation. As a general
rule, we conclude that for sufficiently large systems, the efficiency of
diffusion-reaction processes involving two synchronously diffusing reactants
(two-walker case) relative to processes in which one reactant of a pair is
anchored at some point in the reaction space (one walker plus trap case) is
higher, and is enhanced the lower the dimensionality of the system. This
differential efficiency becomes larger with increasing system size and, for
periodic systems, its asymptotic value may depend on the parity of the lattice.
Imposing confining boundaries on the system enhances the differential
efficiency relative to the periodic case, while decreasing the absolute
efficiencies of both two-walker and one walker plus trap processes. Analytic
arguments are presented to provide a rationale for the results obtained. The
insights afforded by the analysis to the design of heterogeneous catalyst
systems are also discussed.Comment: 15 pages, 8 figures, uses revtex4, accepted for publication in
Physica
Synchronous vs. asynchronous dynamics of diffusion-controlled reactions
An analytical method based on the classical ruin problem is developed to
compute the mean reaction time between two walkers undergoing a generalized
random walk on a 1d lattice. At each time step, either both walkers diffuse
simultaneously with probability (synchronous event) or one of them diffuses
while the other remains immobile with complementary probability (asynchronous
event). Reaction takes place through same site occupation or position exchange.
We study the influence of the degree of synchronicity of the walkers and
the lattice size on the global reaction's efficiency. For odd , the
purely synchronous case () is always the most effective one, while for
even , the encounter time is minimized by a combination of synchronous and
asynchronous events. This new parity effect is fully confirmed by Monte Carlo
simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the
1d continuum approximation valid for sufficiently large lattices predicts a
monotonic increase of the efficiency as a function of . The relevance of the
model for several research areas is briefly discussed.Comment: 21 pages (including 12 figures and 4 tables), uses revtex4.cls,
accepted for publication in Physica
The Lick AGN Monitoring Project: Broad-Line Region Radii and Black Hole Masses from Reverberation Mapping of Hbeta
We have recently completed a 64-night spectroscopic monitoring campaign at
the Lick Observatory 3-m Shane telescope with the aim of measuring the masses
of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected
masses in the range ~10^6-10^7 M_sun and also the well-studied nearby active
galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including
NGC 5548) showed optical variability of sufficient strength during the
monitoring campaign to allow for a time lag to be measured between the
continuum fluctuations and the response to these fluctuations in the broad
Hbeta emission. We present here the light curves for the objects in this sample
and the subsequent Hbeta time lags for the nine objects where these
measurements were possible. The Hbeta lag time is directly related to the size
of the broad-line region, and by combining the lag time with the measured width
of the Hbeta emission line in the variable part of the spectrum, we determine
the virial mass of the central supermassive black hole in these nine AGNs. The
absolute calibration of the black hole masses is based on the normalization
derived by Onken et al. We also examine the time lag response as a function of
velocity across the Hbeta line profile for six of the AGNs. The analysis of
four leads to ambiguous results with relatively flat time lags as a function of
velocity. However, SBS 1116+583A exhibits a symmetric time lag response around
the line center reminiscent of simple models for circularly orbiting broad-line
region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most
easily explained by a simple gravitational infall model. Further investigation
will be necessary to fully understand the constraints placed on physical models
of the BLR by the velocity-resolved response in these objects.Comment: 24 pages, 16 figures and 13 tables, submitted to Ap
The Lick AGN Monitoring Project: Reverberation Mapping of Optical Hydrogen and Helium Recombination Lines
We have recently completed a 64-night spectroscopic monitoring campaign at
the Lick Observatory 3-m Shane telescope with the aim of measuring the masses
of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected
masses in the range ~10^6-10^7M_sun and also the well-studied nearby active
galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including
NGC 5548) showed optical variability of sufficient strength during the
monitoring campaign to allow for a time lag to be measured between the
continuum fluctuations and the response to these fluctuations in the broad
Hbeta emission, which we have previously reported. We present here the light
curves for the Halpha, Hgamma, HeII 4686, and HeI 5876 emission lines and the
time lags for the emission-line responses relative to changes in the continuum
flux. Combining each emission-line time lag with the measured width of the line
in the variable part of the spectrum, we determine a virial mass of the central
supermassive black hole from several independent emission lines. We find that
the masses are generally consistent within the uncertainties. The time-lag
response as a function of velocity across the Balmer line profiles is examined
for six of the AGNs. Finally we compare several trends seen in the dataset
against the predictions from photoionization calculations as presented by
Korista & Goad. We confirm several of their predictions, including an increase
in responsivity and a decrease in the mean time lag as the excitation and
ionization level for the species increases. Further confirmation of
photoionization predictions for broad-line gas behavior will require additional
monitoring programs for these AGNs while they are in different luminosity
states. [abridged]Comment: 37 pages, 18 figures and 15 tables, accepted for publication in the
Astrophysical Journa
Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7
Strongly Variable z=1.48 FeII and MgII Absorption in the Spectra of z=4.05 GRB 060206
We report on the discovery of strongly variable FeII and MgII absorption
lines seen at z=1.48 in the spectra of the z=4.05 GRB 060206 obtained between
4.13 to 7.63 hours (observer frame) after the burst. In particular, the FeII
line equivalent width (EW) decayed rapidly from 1.72+-0.25 AA to 0.28+-0.21 AA,
only to increase to 0.96+-0.21 AA in a later date spectrum. The MgII doublet
shows even more complicated evolution: the weaker line of the doublet drops
from 2.05+-0.25 AA to 0.92+-0.32 AA, but then more than doubles to 2.47+-0.41
AA in later data. The ratio of the EWs for the MgII doublet is also variable,
being closer to 1:1 (saturated regime) when the lines are stronger and becoming
closer to 2:1 (unsaturated regime) when the lines are weaker, consistent with
expectations based on atomic physics. We have investigated and rejected the
possibility of any instrumental or atmospheric effects causing the observed
strong variations. Our discovery of clearly variable intervening FeII and MgII
lines lends very strong support to their scenario, in which the characteristic
size of intervening patches of MgII ``clouds'' is comparable to the GRB beam
size, i.e, about 10^16 cm. We discuss various implications of this discovery,
including the nature of the MgII absorbers, the physics of GRBs, and
measurements of chemical abundances from GRB and quasar absorption lines.Comment: 14 pages, 3 figures, 1 table; ApJ Letters, accepte
Collapse of Rotating Magnetized Molecular Cloud Cores and Mass Outflows
Collapse of the rotating magnetized molecular cloud core is studied with the
axisymmetric magnetohydrodynamical (MHD) simulations. Due to the change of the
equation of state of the interstellar gas, the molecular cloud cores experience
several different phases as collapse proce eds. In the isothermal run-away
collapse (), a pseudo-disk is formed and
it continues to contract till the opaque core is fo rmed at the center. In this
disk, a number of MHD fast and slow shock pairs appear running parallelly to
the disk. After the equation of state becomes hard, an adiabatic core is
formed, which is separated from the isothermal contracting pseudo-disk by the
accretion shock front facing radially outwards. By the effect of the magnetic
tension, the angular momentum is transferred from the disk mid-plane to the
surface. The gas with excess angular momentum near the surface is finally
ejected, which explains the molecular bipolar outflow. Two types of outflows
are observed. When the poloidal magnetic field is strong (magnetic energy is
comparable to the thermal one), a U-shaped outflow is formed in which fast
moving gas is confined to the wall whose shape looks like a capit al letter U.
The other is the turbulent outflow in which magnetic field lines and velocity
fi elds are randomly oriented. In this case, turbulent gas moves out almost
perpendicularly from the disk. The continuous mass accretion leads to the
quasistatic contraction of the first core. A second collapse due to
dissociation of H in the first core follows. Finally another quasistatic
core is again formed by atomic hydrogen (the second core). It is found that
another outflow is ejected around the second atomic core, which seems to
correspond to the optical jets or the fast neutral winds.Comment: submitted to Ap
Rotational states in deformed nuclei: An analytic approach
The consequences of the spontaneous breaking of rotational symmetry are
investigated in a field theory model for deformed nuclei, based on simple
separable interactions. The crucial role of the Ward-Takahashi identities to
describe the rotational states is emphasized. We show explicitly how the rotor
picture emerges from the isoscalar Goldstone modes, and how the two-rotor model
emerges from the isovector scissors modes. As an application of the formalism,
we discuss the M1 sum rules in deformed nuclei, and make connection to
empirical information.Comment: 19 pages, 9 figure
A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051
We present the first results from a high sampling rate, multi-month
reverberation mapping campaign undertaken primarily at MDM Observatory with
supporting observations from telescopes around the world. The primary goal of
this campaign was to obtain either new or improved Hbeta reverberation lag
measurements for several relatively low luminosity AGNs. We feature results for
NGC 4051 here because, until now, this object has been a significant outlier
from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on
the relationship between the broad-line region (BLR) radius and the optical
continuum luminosity - the R_BLR-L relationship. Our new measurements of the
lag time between variations in the continuum and Hbeta emission line made from
spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR =
1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52)
x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L
relationship, based on the present luminosity of NGC 4051 and the most current
calibration of the relation by Bentz et al. (2009a). We also present a
preliminary look at velocity-resolved Hbeta light curves and time delay
measurements, although we are unable to reconstruct an unambiguous
velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1
reflect suggestions from anonymous refere
- …