1,348 research outputs found

    Leaching Behavior of Rare Earth Elements in Fort Union Lignite Coals of North America

    Get PDF
    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicated that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80-95wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. Scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is primarily associated as acid-soluble mineral forms

    Elimination of the reaction rate 'scale effect': application of the Lagrangian reactive particle-tracking method to simulate mixing-limited, field-scale biodegradation at the Schoolcraft (MI, USA) site

    Get PDF
    This is the peer reviewed version of the following article: [Ding, D., Benson, D. A., Fernàndez‐Garcia, D., Henri, C. V., Hyndman, D. W., Phanikumar, M. S., & Bolster, D. (2017). Elimination of the reaction rate “scale effect”: Application of the Lagrangian reactive particle‐tracking method to simulate mixing‐limited, field‐scale biodegradation at the Schoolcraft (MI, USA) site. Water Resources Research, 53, 10,411–10,432. https://doi.org/10.1002/2017WR021103], which has been published in final form at https://doi.org/10.1002/2017WR021103. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Measured (or empirically fitted) reaction rates at groundwater remediation sites are typically much lower than those found in the same material at the batch or laboratory scale. The reduced rates are commonly attributed to poorer mixing at the larger scales. A variety of methods have been proposed to account for this scaling effect in reactive transport. In this study, we use the Lagrangian particle-tracking and reaction (PTR) method to simulate a field bioremediation experiment at the Schoolcraft, MI site. A denitrifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the aquifer, along with sufficient substrate, to degrade the contaminant, carbon tetrachloride (CT), under anaerobic conditions. The PTR method simulates chemical reactions through probabilistic rules of particle collisions, interactions, and transformations to address the scale effect (lower apparent reaction rates for each level of upscaling, from batch to column to field scale). In contrast to a prior Eulerian reaction model, the PTR method is able to match the field-scale experiment using the rate coefficients obtained from batch experiments.Peer ReviewedPostprint (author's final draft

    Applications of graphics to support a testbed for autonomous space vehicle operations

    Get PDF
    Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics

    Evaluating Antioxidant Activity of Selected Plant Species Native to Cedarville, Ohio

    Get PDF
    Over the past several decades, there has been an increase in the number of synthetic drug molecules developed and utilized to treat various conditions. Although these synthetic drugs have proven useful, there has been growing public concern regarding the potentially negative long-term effects of synthetic agents on the body. As a result, there has been an increased interest in identifying and utilizing plant extracts and purified compounds since they are perceived to be a more natural alternative to synthetic drugs. The goal of this study was to evaluate the specific antioxidant properties of alsike clover Trifolum hybridum when produced under differing growing conditions. The alsike clover was collected from the campus of Cedarville University, Cedarville, Ohio for testing. Alsike clover was removed from the field in January 2013, and transplanted indoors under grow lights for 14 days. These plants were then subjected to three separate 60-day treatments: control treatment - watering to field capacity with no fertilizer; positive treatment - watering to field capacity with fertilizer; and negative treatment - half of the water given to the field capacity treatment with no fertilizer. The rationale for choosing these different treatments was to evaluate the effects of specific growing conditions on bioactive secondary metabolite production in alsike clover. The biological evaluation was accomplished by conducting diphenylpicrylhyrazyl (DPPH) free-radical scavenging and Folin Ciocalteu assays to assess the concentration of polyphenolic compounds. Results from these experiments indicate that the biological and chemical profiles of alsike clover can be influenced by the environmental conditions under which the plants are grown

    Exposure to dietary mercury alters cognition and behavior of zebra finches

    Get PDF
    Environmental stressors can negatively affect avian cognitive abilities, potentially reducing fitness, for example by altering response to predators, display to mates, or memory of locations of food. We expand on current knowledge by investigating the effects of dietary mercury, a ubiquitous environmental pollutant and known neurotoxin, on avian cognition. Zebra finches Taeniopygia guttata were dosed for their entire lives with sub-lethal levels of mercury, at the environmentally relevant dose of 1.2 parts per million. In our first study, we compared the dosed birds with controls of the same age using tests of three cognitive abilities: spatial memory, inhibitory control, and color association. In the spatial memory assay, birds were tested on their ability to learn and remember the location of hidden food in their cage. The inhibitory control assay measured their ability to ignore visible but inaccessible food in favor of a learned behavior that provided the same reward. Finally, the color association task tested each bird\u27s ability to associate a specific color with the presence of hidden food. Dietary mercury negatively affected spatial memory ability but not inhibitory control or color association. Our second study focused on three behavioral assays not tied to a specific skill or problem-solving: activity level, neophobia, and social dominance. Zebra finches exposed to dietary mercury throughout their lives were subordinate to, and more active than, control birds. We found no evidence that mercury exposure influenced our metric of neophobia. Together, these results suggest that sub-lethal exposure to environmental mercury selectively harms neurological pathways that control different cognitive abilities, with complex effects on behavior and fitness

    Complete Exact Solution of Diffusion-Limited Coalescence, A + A -> A

    Full text link
    Some models of diffusion-limited reaction processes in one dimension lend themselves to exact analysis. The known approaches yield exact expressions for a limited number of quantities of interest, such as the particle concentration, or the distribution of distances between nearest particles. However, a full characterization of a particle system is only provided by the infinite hierarchy of multiple-point density correlation functions. We derive an exact description of the full hierarchy of correlation functions for the diffusion-limited irreversible coalescence process A + A -> A.Comment: 4 pages, 2 figures (postscript). Typeset with Revte

    Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents

    Full text link
    We propose a model for diffusion-limited annihilation of two species, A+BAA+B\to A or BB, where the motion of the particles is subject to a drift. For equal initial concentrations of the two species, the density follows a power-law decay for large times. However, the decay exponent varies continuously as a function of the probability of which particle, the hopping one or the target, survives in the reaction. These results suggest that diffusion-limited reactions subject to drift do not fall into a limited number of universality classes.Comment: 10 pages, tex, 3 figures, also available upon reques

    Molecular Characterization of Host-Specific Biofilm Formation in a Vertebrate Gut Symbiont

    Get PDF
    Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain’s host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway) completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process
    corecore