1,174 research outputs found

    Cross-Lingual Adaptation using Structural Correspondence Learning

    Full text link
    Cross-lingual adaptation, a special case of domain adaptation, refers to the transfer of classification knowledge between two languages. In this article we describe an extension of Structural Correspondence Learning (SCL), a recently proposed algorithm for domain adaptation, for cross-lingual adaptation. The proposed method uses unlabeled documents from both languages, along with a word translation oracle, to induce cross-lingual feature correspondences. From these correspondences a cross-lingual representation is created that enables the transfer of classification knowledge from the source to the target language. The main advantages of this approach over other approaches are its resource efficiency and task specificity. We conduct experiments in the area of cross-language topic and sentiment classification involving English as source language and German, French, and Japanese as target languages. The results show a significant improvement of the proposed method over a machine translation baseline, reducing the relative error due to cross-lingual adaptation by an average of 30% (topic classification) and 59% (sentiment classification). We further report on empirical analyses that reveal insights into the use of unlabeled data, the sensitivity with respect to important hyperparameters, and the nature of the induced cross-lingual correspondences

    Spatiotemporal Oscillation Patterns in the Collective Relaxation Dynamics of Interacting Particles in Periodic Potentials

    Full text link
    We demonstrate the emergence of self-organized structures in the course of the relaxation of an initially excited, dissipative and finite chain of interacting particles in a periodic potential towards its many particle equilibrium configuration. Specifically we observe a transition from an in phase correlated motion via phase randomized oscillations towards oscillations with a phase difference π\pi between adjacent particles thereby yielding the growth of long time transient spatiotemporal oscillation patterns. Parameter modifications allow for designing these patterns, including steady states and even states that combine in phase and correlated out of phase oscillations along the chain. The complex relaxation dynamics is based on finite size effects together with an evolution running from the nonlinear to the linear regime thereby providing a highly unbalanced population of the center of mass and relative motion

    Disorder-induced regular dynamics in oscillating lattices

    Full text link
    We explore the impact of weak disorder on the dynamics of classical particles in a periodically oscillating lattice. It is demonstrated that the disorder induces a hopping process from diffusive to regular motion i.e. we observe the counterintuitive phenomenon that disorder leads to regular behaviour. If the disorder is localized in a finite-sized part of the lattice, the described hopping causes initially diffusive particles to even accumulate in regular structures of the corresponding phase space. A hallmark of this accumulation is the emergence of pronounced peaks in the velocity distribution of particles which should be detectable in state of the art experiments e.g. with cold atoms in optical lattices

    Site-selective particle deposition in periodically driven quantum lattices

    Full text link
    We demonstrate that a site-dependent driving of a periodic potential allows for the controlled manipulation of a quantum particle on length scales of the lattice spacing. Specifically we observe for distinct driving frequencies a near depletion of certain sites which is explained by a resonant mixing of the involved Floquet-Bloch modes occurring at these frequencies. Our results could be exploited as a scheme for a site-selective loading of e.g. ultracold atoms into an optical lattices

    Quench Dynamics of Two Coupled Ionic Zig-Zag Chains

    Full text link
    We explore the non-equilibrium dynamics of two coupled zig-zag chains of trapped ions in a double well potential. Following a quench of the potential barrier between both wells, the induced coupling between both chains due to the long-range interaction of the ions leads to their complete melting. The resulting dynamics is however not exclusively irregular but leads to phases of motion during which various ordered structures appear with ions arranged in arcs, lines and crosses. We quantify the emerging order by introducing a suitable measure and complement our analysis of the ion dynamics using a normal mode analysis showing a decisive population transfer between only a few distinguished modes

    Simultaneous control of multi-species particle transport and segregation in driven lattices

    Full text link
    We provide a generic scheme to separate the particles of a mixture by their physical properties like mass, friction or size. The scheme employs a periodically shaken two dimensional dissipative lattice and hinges on a simultaneous transport of particles in species-specific directions. This selective transport is achieved by controlling the late-time nonlinear particle dynamics, via the attractors embedded in the phase space and their bifurcations. To illustrate the spectrum of possible applications of the scheme, we exemplarily demonstrate the separation of polydisperse colloids and mixtures of cold thermal alkali atoms in optical lattices

    Patterned Deposition of Particles in Spatio-temporally Driven Lattices

    Full text link
    We present and analyze mechanisms for the patterned deposition of particles in a spatio-temporally driven lattice. The working principle is based on the breaking of the spatio-temporal translation symmetry, which is responsible for the equivalence of all lattice sites, by applying modulated phase shifts to the lattice sites. The patterned trapping of the particles occurs in confined chaotic seas, created via the ramping of the height of the lattice potential. Complex density profiles on the length scale of the complete lattice can be obtained by a quasi-continuous, spatial deformation of the chaotic sea in a frequency modulated lattice.Comment: 5 pages, 4 figure

    Symmetries and transport in site-dependently driven quantum lattices

    Full text link
    We explore the quantum dynamics of particles in a spatiotemporally driven lattice. A powerful numerical scheme is developed, which provides us with the Floquet modes and thus enables a stroboscopic propagation of arbitrary initial states. A detailed symmetry analysis represents the cornerstone for an intricate manipulation of the Floquet spectrum. Specifically, we show how exact crossings can be converted into avoided ones, while the width of these resulting avoided crossings can be engineered by adjusting parameters of the local driving. Asymptotic currents are shown to be controllable over a certain parameter range

    Dimensional coupling induced current reversal in two-dimensional driven lattices

    Full text link
    We show that the direction of directed particle transport in a two dimensional ac-driven lattice can be dynamically reversed by changing the structure of the lattice in the direction perpendicular to the applied driving force. These structural changes introduce dimensional coupling effects, the strength of which governs the timescale of the current reversals. The underlying mechanism is based on the fact that dimensional coupling allows the particles to explore regions of phase space which are inaccessible otherwise. The experimental realization for cold atoms in ac-driven optical lattices is discussed
    • …
    corecore