18 research outputs found

    Direct ink writing of custom UV curable rubbers with radiation absorbing particles and its challenges

    Get PDF
    Please click Additional Files below to see the full abstract

    Lateral mobility of tethered vesicle - DNA assemblies

    No full text
    Supported lipid membranes are particularly attractive for use in biochemical assays because of their resistance to nonspecific adsorption and their unique ability to host transmembrane proteins. Although ideal for use in many surface-based detection techniques, supported bilayers can make the incorporation of proteins problematic due to the steric constraints of the underlying substrate. A recently developed strategy overcomes this obstacle by tethering liposomes to supported lipid bilayers via cholesterol-tagged DNA. Due to the fluidity of the bilayer, the vesicle assemblies exhibited significant lateral mobility. The corresponding diffusion coefficients were then investigated using fluorescence recovery after photobleaching (FRAP). The diffusivity was neither sensitive to the size of the vesicles nor to the length of the DNA tether. However, changing from single cholesterol tethers to double cholesterol tethers caused a decrease in the diffusivity of the assemblies by a factor of 3. Perhaps even more notable was the fact that single cholesterol-DNA without vesicles diffused 6 times faster than the corresponding assemblies. Double cholesterol-DNA diffused 11 times faster. This discrepancy is believed to arise from the fact that each vesicle is tethered to the bilayer by multiple DNA pairs

    Imaging magnetic flux lines with iron oxide nanoparticles using a fossilized liquid assembly

    No full text
    Directed self-assembly of nanomaterials via external fields is an attractive processing tool for industry as it is inherently inexpensive and flexible. Direct observations of this process are however challenging due to the nano and meso length scales involved. The self-assembly of magnetic nanoparticles in particular has gained much recent interest for applications ranging from biomedical imaging and targeted cancer therapy to ferrofluid mechanical damping devices, that rely on the state of aggregation and alignment of the nanoparticles. We utilize an oil–water platform to directly observe directed self-assembly of magnetic nanoparticles that are field ordered into two-dimensional mesostructures through the fossilized liquid assembly (FLA) method. Our system consisted of polymer-coated iron-oxide nanoparticles (25 nm) which were assembled in the vicinity of the interface between a crosslinkable hydrophobic monomer (UV-polymerizable) oil, and water through the use of external magnetic fields, and then cured with UV light. This flash curing system effectively provides a snapshot of the assembly process and allows for direct visualization of assemblies through the use of both atomic force and optical microscopy. In this study, entire magnetic flux field lines in various geometrical configurations were successfully modelled and mapped out by the magnetic nanoparticles, both in-plane and in perpendicular orientations utilizing FLA. The assemblies showed strong directional selectivity and alignment with the flux field lines and provided evidence of strong dipole interactions which partially caused aggregate sedimentation

    Characterization of a proton pumping transmembrane protein incorporated into a supported three-dimensional matrix of proteoliposomes

    No full text
    Surface analytical tools have gained interest in the bioanalytical field during recent years because they offer the possibility of more detailed investigations of biomolecular interactions. To be able to use such tools, the biomolecules of interest must be immobilized to a surface in a functioning way. For small water-soluble biomolecules, the surface immobilization is quite straightforward, but it has been shown to be difficult for large transmembrane proteins. In those cases, the solid surface often has a negative influence on the function of the transmembrane proteins. In this article, we present a new approach for surface immobilization of transmembrane proteins where the proteins were immobilized on a surface in a proteoliposome multilayer structure. The surface-binding events and the structure of the surface-immobilized proteoliposomes were monitored using both the quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) techniques. With this multilayer proteoliposome structure, it was possible to detect trypsin digestion of the transmembrane protein proton translocating nicotinamide nucleotide transhydrogenase in real time using SPR. The results from the combined SPR and QCM-D analysis were confirmed by fluorescence microscopy imaging of the multilayer structure and activity measurements of transhydrogenase. These results showed that the activity of transhydrogenase was significantly decreased in the bottom layer, but in the subsequent proteoliposome layers 90% of the activity was retained compared with bulk measurements. These results emphasize the importance of an immobilization strategy where the transmembrane proteins are lifted off the solid surface at the same time as the amount of protein is increased. We consider this new method for surface immobilization of transmembrane proteins to meet these demands and that the method will improve the possibility to use a variety of surface analytical tools for the analysis of interactions involving transmembrane proteins in the future

    Light-Regulated release of liposomes from phospholipid membranes via photoresponsive polymer-DNA conjugates

    No full text
    A method for releasing tethered liposomes from a supported lipid bilayer in response to a light stimulus is described. The tethering is accomplished through the hybridization of end-functionalized DNA that resides on both the supported lipid bilayer and liposome surfaces. Normally consisting of cholesterol or lipid tails, the end group is replaced in this study by a photoresponsive polymer that partitions into lipid bilayers at physiological pH. When exposed to UV light, it undergoes excited state proton transfer with water. The ensuing increase in polarity increases the solubility of the polymer in the aqueous phase. Quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy have been used to record both the construction of the vesicle assembly and the subsequent response to UV light. It is found that the critical flow rate for vesicle release is reduced when buffer flow is performed in conjunction with UV exposure. \ua9 The Royal Society of Chemistry 2006
    corecore