96 research outputs found
A very low central oxygen mass in the peculiar type Ia SN 2010lp: further diversity at the low-luminosity end of SNe Ia
A nebular spectrum of the peculiar, low-luminosity type Ia supernova 2010lp is modelled in order to estimate the composition of the inner ejecta and to illuminate the nature of this event. Despite having a normally declining light curve, SN 2010lp was similar spectroscopically to SN 1991bg at early times. However, it showed a very unusual double-peaked [O i] λ λ, 6300,6363 emission at late times (Taubenberger et al.). Modelling of the nebular spectrum suggests that a very small amount of oxygen (∼0.05 M·), expanding at very low speed (≲ 2000 km s-1) is sufficient to reproduce the observed emission. The rest of the nebula is not too dissimilar from SN 1991bg, except that SN 2010lp is slightly more luminous. The double-peaked [O i] emission suggests that SN 2010lp may be consistent with the merger or collision of two low-mass white dwarfs. The low end of the SN Ia luminosity sequence is clearly populated by diverse events, where different channels may contribute
An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae
Type Ia Supernovae (SNe Ia) form an observationally uniform class of stellar
explosions, in that more luminous objects have smaller decline-rates. This
one-parameter behavior allows SNe Ia to be calibrated as cosmological `standard
candles', and led to the discovery of an accelerating Universe. Recent
investigations, however, have revealed that the true nature of SNe Ia is more
complicated. Theoretically, it has been suggested that the initial
thermonuclear sparks are ignited at an offset from the centre of the
white-dwarf (WD) progenitor, possibly as a result of convection before the
explosion. Observationally, the diversity seen in the spectral evolution of SNe
Ia beyond the luminosity decline-rate relation is an unresolved issue. Here we
report that the spectral diversity is a consequence of random directions from
which an asymmetric explosion is viewed. Our findings suggest that the spectral
evolution diversity is no longer a concern in using SNe Ia as cosmological
standard candles. Furthermore, this indicates that ignition at an offset from
the centre of is a generic feature of SNe Ia.Comment: To appear in Nature, 1st July 2010 issue. 36 pages including
supplementary materials. 4 figures, 3 supplementary figures, 1 supplementary
tabl
A low energy core-collapse supernova without a hydrogen envelope
The final fate of massive stars depends on many factors, including mass,
rotation rate, magnetic fields and metallicity. Theory suggests that some
massive stars (initially greater than 25-30 solar masses) end up as Wolf-Rayet
stars which are deficient in hydrogen because of mass loss through strong
stellar winds. The most massive of these stars have cores which may form a
black hole and theory predicts that the resulting explosion produces ejecta of
low kinetic energy, a faint optical display and a small mass fraction of
radioactive nickel(1,2,3). An alternative origin for low energy supernovae is
the collapse of the oxygen-neon core of a relatively lowmass star (7-9 solar
masses) through electron capture(4,5). However no weak, hydrogen deficient,
core-collapse supernovae are known. Here we report that such faint, low energy
core-collapse supernovae do exist, and show that SN2008ha is the faintest
hydrogen poor supernova ever observed. We propose that other similar events
have been observed but they have been misclassified as peculiar thermonuclear
supernovae (sometimes labelled SN2002cx-like events(6)). This discovery could
link these faint supernovae to some long duration gamma-ray bursts. Extremely
faint, hydrogen-stripped core-collapse supernovae have been proposed to produce
those long gamma-ray bursts whose afterglows do not show evidence of
association with supernovae (7,8,9).Comment: Submitted 12 January 2009 - Accepted 24 March 200
A ‘higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases
Abundance stratification in Type Ia supernovae – VI. The peculiar slow decliner SN 1999aa
The abundance distribution in the ejecta of the peculiar slowly declining Type Ia supernova (SN Ia) SN 1999aa is obtained by modelling a time series of optical spectra. Similar to SN 1991T, SN 1999aa was characterized by early-time spectra dominated by Fe iii features and a weak Si ii 6355 Å line, but it exhibited a high-velocity Ca ii H&K line and morphed into a spectroscopically normal SN Ia earlier. Three explosion models are investigated, yielding comparable fits. The innermost layers are dominated by ∼0.3 M⊙ of neutron-rich stable iron-group elements, mostly stable iron. Above that central region lies a 56Ni-dominated shell, extending to – km s−1, with mass ∼0.65 M⊙. These inner layers are therefore similar to those of normal SNe Ia. However, the outer layers exhibit composition peculiarities similar to those of SN 1991T: The intermediate-mass elements shell is very thin, containing only ∼0.2 M⊙, and is sharply separated from an outer oxygen-dominated shell, which includes ∼0.22 M⊙. These results imply that burning suddenly stopped in SN 1999aa. This is a feature SN 1999aa shares with SN 1991T, and explains the peculiarities of both SNe, which are quite similar in nature apart from the different luminosities. The spectroscopic path from normal to SN 1991T-like SNe Ia cannot be explained solely by a temperature sequence. It also involves composition layering differences, suggesting variations in the progenitor density structure or in the explosion parameters
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
A giant outburst two years before the core-collapse of a massive star
The death of massive stars produces a variety of supernovae, which are linked
to the structure of the exploding stars. The detection of several precursor
stars of Type II supernovae have been reported, however we do not yet have
direct information on the progenitors of the hydrogen deficient Type Ib and Ic
supernovae. Here we report that the peculiar Type Ib supernova SN2006jc is
spatially coincident with a bright optical transient that occurred in 2004.
Spectroscopic and photometric monitoring of the supernova leads us to suggest
that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a
helium-rich circumstellar medium. There are different possible explanations for
this pre-explosion transient. It appears similar to the giant outbursts of
Luminous Blue Variables (LBV) of 60-100 solar mass stars, however the
progenitor of SN2006jc was helium and hydrogen deficient. An LBV-like outburst
of a Wolf-Rayet star could be invoked, but this would be the first
observational evidence of such a phenomenon. Alternatively a massive binary
system composed of an LBV which erupted in 2004, and a Wolf-Rayet star
exploding as SN2006jc, could explain the observations.Comment: 15 pages, 4 figures (supplementary information included). Originally
submitted on Nov. 24, 2006; twice revised. Final version submitted to Natur
Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau
In this work, we present photometric and spectroscopic data of the low-luminosity (LL) Type IIP supernova (SN) 2018hwm. The object shows a faint (Mr = -15 mag) and very long (~ 130 d) plateau, followed by a 2.7 mag drop in the r band to the radioactive tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000-1400 km s-1 range. The nebular spectrum, dominated by H α in emission, reveals weak emission from [O I] and [Ca II] doublets. The absolute light curve and spectra at different phases are similar to those of LL SNe IIP. We estimate that 0.002 M⊙ of 56Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.055 foe, a progenitor radius of 215 R⊙, and a final progenitor mass of 9-10 M⊙. Finally, we performed a modelling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M(16O)≈ 0.02M⊙, but a high M(40Ca) of 0.3 M⊙. The inferred low explosion energy, the low ejected 56Ni mass, and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a superasymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10-12 M⊙ red supergiant.</p
Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau
In this work, we present photometric and spectroscopic data of the low-luminosity (LL) Type IIP supernova (SN) 2018hwm. The object shows a faint (Mr = -15 mag) and very long (∼130 d) plateau, followed by a 2.7 mag drop in the r band to the radioactive tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000-1400 km s-1 range. The nebular spectrum, dominated by H α in emission, reveals weak emission from [O i] and [Ca ii] doublets. The absolute light curve and spectra at different phases are similar to those of LL SNe IIP. We estimate that 0.002 M of 56Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.055 foe, a progenitor radius of 215 R, and a final progenitor mass of 9-10 M. Finally, we performed a modelling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M(16O), but a high M(40Ca) of 0.3 M. The inferred low explosion energy, the low ejected 56Ni mass, and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a superasymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10-12 M red supergiant
Type Ia Supernovae as Stellar Endpoints and Cosmological Tools
Empirically, Type Ia supernovae are the most useful, precise, and mature
tools for determining astronomical distances. Acting as calibrated candles they
revealed the presence of dark energy and are being used to measure its
properties. However, the nature of the SN Ia explosion, and the progenitors
involved, have remained elusive, even after seven decades of research. But now
new large surveys are bringing about a paradigm shift --- we can finally
compare samples of hundreds of supernovae to isolate critical variables. As a
result of this, and advances in modeling, breakthroughs in understanding all
aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version.
Shortened, update
- …