6 research outputs found

    Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator

    Get PDF
    We point out some pitfalls related to the concept of an oracle property as used in Fan and Li (2001, 2002, 2004) which are reminiscent of the well-known pitfalls related to Hodges’ estimator. The oracle property is often a consequence of sparsity of an estimator. We show that any estimator satisfying a sparsity property has maximal risk that converges to the supremum of the loss function; in particular, the maximal risk diverges to infinity when ever the loss function is unbounded. For ease of presentation the result is set in the framework of a linear regression model, but generalizes far beyond that setting. In a Monte Carlo study we also assess the extent of the problem infinite samples for the smoothly clipped absolute deviation (SCAD) estimator introduced in Fan and Li (2001). We find that this estimator can perform rather poorly infinite samples and that its worst-case performance relative to maximum likelihood deteriorates with increasing sample size when the estimator is tuned to sparsity.Oracle property, Sparsity, Penalized maximum likelihood, Penalized least squares, Hodges’ estimator, SCAD, Lasso, Bridge estimator, Hard-thresholding, Maximal risk, Maximal absolute bias, Non-uniform limits

    Lower Risk Bounds and Properties of Confidence Sets for Ill-Posed Estimation Problems with Applications to Spectral Density and Persistence Estimation, Unit Roots, and Estimation of Long Memory Parameters

    No full text
    Important estimation problems in econometrics like estimating the value of a spectral density at frequency zero, which appears in the econometrics literature in the guises of heteroskedasticity and autocorrelation consistent variance estimation and long run variance estimation, are shown to be "ill-posed" estimation problems. A prototypical result obtained in the paper is that the minimax risk for estimating the value of the spectral density at frequency zero is infinite regardless of sample size, and that confidence sets are close to being uninformative. In this result the maximum risk is over commonly used specifications for the set of feasible data generating processes. The consequences for inference on unit roots and cointegration are discussed. Similar results for persistence estimation and estimation of the long memory parameter are given. All these results are obtained as special cases of a more general theory developed for abstract estimation problems, which readily also allows for the treatment of other ill-posed estimation problems such as, e.g., nonparametric regression or density estimation. Copyright The Econometric Society 2002.
    corecore