5,954 research outputs found

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request

    Chaotic systems in complex phase space

    Full text link
    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.Comment: 22 page, 16 figure

    Convergence of the Optimized Delta Expansion for the Connected Vacuum Amplitude: Zero Dimensions

    Full text link
    Recent proofs of the convergence of the linear delta expansion in zero and in one dimensions have been limited to the analogue of the vacuum generating functional in field theory. In zero dimensions it was shown that with an appropriate, NN-dependent, choice of an optimizing parameter \l, which is an important feature of the method, the sequence of approximants ZNZ_N tends to ZZ with an error proportional to e−cN{\rm e}^{-cN}. In the present paper we establish the convergence of the linear delta expansion for the connected vacuum function W=ln⁡ZW=\ln Z. We show that with the same choice of \l the corresponding sequence WNW_N tends to WW with an error proportional to e−cN{\rm e}^{-c\sqrt N}. The rate of convergence of the latter sequence is governed by the positions of the zeros of ZNZ_N.Comment: 20 pages, LaTeX, Imperial/TP/92-93/5

    Interactions of Hermitian and non-Hermitian Hamiltonians

    Full text link
    The coupling of non-Hermitian PT-symmetric Hamiltonians to standard Hermitian Hamiltonians, each of which individually has a real energy spectrum, is explored by means of a number of soluble models. It is found that in all cases the energy remains real for small values of the coupling constant, but becomes complex if the coupling becomes stronger than some critical value. For a quadratic non-Hermitian PT-symmetric Hamiltonian coupled to an arbitrary real Hermitian PT-symmetric Hamiltonian, the reality of the ground-state energy for small enough coupling constant is established up to second order in perturbation theory.Comment: 9 pages, 0 figure

    On eigenvalues of the Schr\"odinger operator with a complex-valued polynomial potential

    Full text link
    In this paper, we generalize a recent result of A. Eremenko and A. Gabrielov on irreducibility of the spectral discriminant for the Schr\"odinger equation with quartic potentials. We consider the eigenvalue problem with a complex-valued polynomial potential of arbitrary degree d and show that the spectral determinant of this problem is connected and irreducible. In other words, every eigenvalue can be reached from any other by analytic continuation. We also prove connectedness of the parameter spaces of the potentials that admit eigenfunctions satisfying k>2 boundary conditions, except for the case d is even and k=d/2. In the latter case, connected components of the parameter space are distinguished by the number of zeros of the eigenfunctions.Comment: 23 page

    The Universality of the Fundamental Plane of E and S0 Galaxies. Spectroscopic data

    Full text link
    We present here central velocity dispersion measurements for 325 early-type galaxies in eight clusters and groups of galaxies, including new observations for 212 galaxies. The clusters and groups are the A262, A1367, Coma (A1656), A2634, Cancer and Pegasus clusters, and the NGC 383 and NGC 507 groups. The new measurements were derived from medium dispersion spectra, that cover 600 A centered on the Mg Ib triplet at lambda ~ 5175. Velocity dispersions were measured using the Tonry & Davis cross-correlation method, with a typical accuracy of 6%. A detailed comparison with other data sources is made.Comment: 12 pages, 5 tables, 3 figures, to appear in AJ. Note that tables 2 and 3 are in separate files, as they should be printed in landscape forma

    Dynamics of higher-order solitons in regular and PT-symmetric nonlinear couplers

    Full text link
    Dynamics of symmetric and antisymmetric 2-solitons and 3-solitons is studied in the model of the nonlinear dual-core coupler and its PT-symmetric version. Regions of the convergence of the injected perturbed symmetric and antisymmetric N-solitons into symmetric and asymmetric quasi-solitons are found. In the PT-symmetric system, with the balanced gain and loss acting in the two cores, borders of the stability against the blowup are identified. Notably, in all the cases the stability regions are larger for antisymmetric 2-soliton inputs than for their symmetric counterparts, on the contrary to previously known results for fundamental solitons (N=1). Dynamical regimes (switching) are also studied for the 2-soliton injected into a single core of the coupler. In particular, a region of splitting of the input into a pair of symmetric solitons is found, which is explained as a manifestation of the resonance between the vibrations of the 2-soliton and oscillations of energy between the two cores in the coupler.Comment: To appear in EPL journa

    Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    Get PDF
    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent

    Convergence Radii for Eigenvalues of Tri--diagonal Matrices

    Get PDF
    Consider a family of infinite tri--diagonal matrices of the form L+zB,L+ zB, where the matrix LL is diagonal with entries Lkk=k2,L_{kk}= k^2, and the matrix BB is off--diagonal, with nonzero entries Bk,k+1=Bk+1,k=kα,0≀α<2.B_{k,{k+1}}=B_{{k+1},k}= k^\alpha, 0 \leq \alpha < 2. The spectrum of L+zBL+ zB is discrete. For small ∣z∣|z| the nn-th eigenvalue En(z),En(0)=n2,E_n (z), E_n (0) = n^2, is a well--defined analytic function. Let RnR_n be the convergence radius of its Taylor's series about z=0.z= 0. It is proved that R_n \leq C(\alpha) n^{2-\alpha} \quad \text{if} 0 \leq \alpha <11/6.$
    • 

    corecore