4,193 research outputs found

    Model-based spacecraft and mission design for the evaluation of technology

    Get PDF
    In order to meet the future vision of robotic missions, engineers will face intricate mission concepts, new operational approaches, and technologies that have yet to be developed. The concept of smaller, model driven projects helps this transition by including life-cycle cost as part of the decision making process. For example, since planetary exploration missions have cost ceilings and short development periods, heritage flight hardware is utilized. However, conceptual designs that rely solely on heritage technology will result in estimates that may not be truly representative of the actual mission being designed and built. The Laboratory for Spacecraft and Mission Design (LSMD) at the California Institute of Technology is developing integrated concurrent models for mass and cost estimations. The purpose of this project is to quantify the infusion of specific technologies where the data would be useful in guiding technology developments leading up to a mission. This paper introduces the design-to-cost model to determine the implications of various technologies on the spacecraft system in a collaborative engineering environment. In addition, comparisons of the benefits of new or advanced technologies for future deep space missions are examined

    Thermal Charm Production in Quark-Gluon Plasma at LHC

    Full text link
    Charm production from the quark-gluon plasma created in the midrapidity of central heavy ion collisions at the Large Hadron Collider (LHC) is studied in the next-to-leading order in QCD. Using a schematic longitudinally boost-invariant and transversally expanding fire-cylinder model, we find that charm production could be appreciably enhanced at LHC as a result of the high temperature that is expected to be reached in the produced quark-gluon plasma. Sensitivities of our results to the number of charm quark pairs produced from initial hard scattering, the initial thermalization time and temperature of the quark-gluon plasma, and the charm quark mass are also studied.Comment: 8 pages, 9 figures; adding a figure and relevant discussion on the sensitivity of our results to the number of charm quark pairs produced from initial hard scattering. Version accepted for publication in PR

    Statistical Modelling for Simulating and Interpreting an Egg Packaging Process for Giveaway Mitigation

    Get PDF
    Giveaway, the excess product being packed into orders, is one of the contributors of revenue loss that pre-packaged food manufacturers care the most. In collaboration with an egg packaging company, this study aims to discover operation rules to mitigate the giveaway in egg orders. For that, two variables have been raised as potential controllable factors of giveaway. One statistical model has been developed to better interpret the experimental results by understanding the underlying rules of the egg grading machine. The experiments have been accurately reproduced by a simulation using the estimated model parameters, which indicates the success of the model. Based on the experiments, we claim that the number of accepted downgrade grades has a significant influence on the final giveaway ratio. Limitations and further potentials of the statistical model have also been discussed

    Endobronchial ultrasound transbronchial needle aspiration: a hybrid method

    Get PDF
    Conventional transbronchial needle aspiration (cTBNA) was first performed approximately 30 years ago; however TBNA was not widely adopted until the development of endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA). Current EBUS-TBNA needle sizes are limited to 21- and 22-gauge. In order to determine whether a 19-gauge (19G) needle in EBUS-TBNA can further improve the diagnostic yield and simplify the methodology of EBUS-TBNA we developed a hybrid method. Here we report our initial experience in assessing the feasibility of performing EBUS-TBNA using a conventional 19G TBNA needle

    Phase transition in the bounded one-dimensional multitrap system

    Full text link
    We have previously discussed the diffusion limited problem of the bounded one-dimensional multitrap system where no external fiel is included and pay special attention to the transmission of the diffusing particles through the system of imperfect traps. We discuss here the case in which an external field is included to each trap and find not only the transmission but also the energy associated with the diffusing particles in the presence and absence of such fields. From the energy we find the specific heat ChC_h and show that for certain values of the parameters associated with the multitrap system it behaves in a manner which is suggestive of phase transition. Moreover, this phase transition is demonstrated not only through the conventional single peak at which the specific heat function is undifferentiable but also through the less frequent phenomenon of double peaks.Comment: 25 pages, 6 PS Figures, there have been introduced many changes including the remove of two figure

    Comparison of extracorporeal shock wave lithotripsy running models between outsourcing cooperation and rental cooperation conducted in Taiwan

    Get PDF
    Background/PurposeWe conducted a retrospective study to compare the cost and effectiveness between two different running models for extracorporeal shock wave lithotripsy (SWL), including the outsourcing cooperation model (OC) and the rental cooperation model (RC).MethodsBetween January 1999 and December 2005, we implemented OC for the SWL, and from January 2006 to October 2011, RC was utilized. With OC, the cooperative company provided a machine and shared a variable payment with the hospital, according to treatment sessions. With RC, the cooperative company provided a machine and received a fixed rent from the hospital. We calculated the cost of each treatment session, and evaluated the break-even point to estimate the lowest number of treatment sessions to make the balance between revenue and cost every month. Effectiveness parameters, including the stone-free rate, the retreatment rate, the rate of additional procedures and complications, were evaluated.ResultsCompared with OC there were significantly less treatment sessions for RC every month (42.6±7.8 vs. 36.8±6.5, p=0.01). The cost of each treatment session was significantly higher for OC than for RC (751.6±20.0 USD vs. 684.7±16.7 USD, p=0.01). The break-even point for the hospital was 27.5 treatment sessions/month for OC, when the hospital obtained 40% of the payment, and it could be reduced if the hospital got a greater percentage. The break-even point for the hospital was 27.3 treatment sessions/month for RC. No significant differences were noticed for the stone-free rate, the retreatment rate, the rate of additional procedures and complications.ConclusionOur study revealed that RC had a lower cost for every treatment session, and fewer treatment sessions of SWL/month than OC. The study might provide a managerial implication for healthcare organization managers, when they face a situation of high price equipment investment

    Complete genome sequences and genomic characterization of five plasmids harbored by environmentally persistent Cronobacter sakazakii strains ST83 H322 and ST64 GK1025B obtained from powdered infant formula manufacturing facilities

    Full text link
    Background: Cronobacter sakazakii is a foodborne pathogen that causes septicemia, meningitis, and necrotizing enterocolitis in neonates and infants. The current research details the full genome sequences of two extremely persistent C. sakazakii strains (H322 and GK1025B) isolated from powdered infant formula (PIF) manufacturing settings. In addition, the genetic attributes associated with five plasmids, pH322_1, pH322_2, pGK1025B_1, pGK1025B_2, and pGK1025B_3 are described. Materials and Methods: Using PacBio single-molecule real-time (SMRT®^{®}) sequencing technology, whole genome sequence (WGS) assemblies of C. sakazakii H322 [Sequence type (ST)83, clonal complex [CC] 83) and GK1025B (ST64, CC64) were generated. Plasmids, also sequenced, were aligned with phylogenetically related episomes to determine, and identify conserved and missing genomic regions. Results: A truncated ~ 13 Kbp type 6 secretion system (T6SS) gene cluster harbored on virulence plasmids pH322_2 and pGK1025B_2, and a second large deletion (~ 6 Kbp) on pH322_2, which included genes for a tyrosine-type recombinase/integrase, a hypothetical protein, and a phospholipase D was identified. Within the T6SS of pH322_2 and pGK1025B_2, an arsenic resistance operon was identified which is in common with that of plasmids pSP291_1 and pESA3. In addition, PHASTER analysis identified an intact 96.9 Kbp Salmonella SSU5 prophage gene cluster in pH322_1 and pGK1025B_1 and showed that these two plasmids were phylogenetically related to C. sakazakii plasmids: pCS1, pCsa767a, pCsaC757b, pCsaC105731a. Plasmid pGK1025B_3 was identified as a novel conjugative Cronobacter plasmid. Furthermore, WGS analysis identified a ~ 16.4 Kbp type 4 secretion system gene cluster harbored on pGK1025B_3, which contained a phospholipase D gene, a key virulence factor in several host–pathogen diseases. Conclusion: These data provide high resolution information on C. sakazakii genomes and emphasizes the need for furthering surveillance studies to link genotype to phenotype of strains from previous investigations. These results provide baseline data necessary for future in-depth investigations of C. sakazakii that colonize PIF manufacturing facility settings and genomic analyses of these two C. sakazakii strains and five associated plasmids will contribute to a better understanding of this pathogen's survival and persistence within various “built environments” like PIF manufacturing facilities

    Jet conversions in a quark-gluon plasma

    Full text link

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1
    • …
    corecore