28 research outputs found
Lifetime of inkjet printing OPV modules for indoor applications.
International audienceHarvesting energy from their environment could be an ideal solution for an autonomous function of numerous small electronics. Organic Photovoltaic (OPV) cells are a promising technology for next generation photovoltaic cells combining novel properties such as light weight, flexibility, or color design with large-scale manufacturing with low environmental impact. Furthermore, the OPV cells are good solution for Indoor applications. In this field, DRACULA TECHNOLOGIES (DT) has developed inkjet printing organic solar cells and modules. The great advantage of inkjet printing as a digital technology is the freedom of forms and designs, large area organic modules with different artistic shapes. The stability of OPV cells are critical element for up-scaling and commercialization of this technology. To evaluate the stability and lifetime of the DT modules, the ISOS-D-1 (shelf lifetime) protocol is applied for 175 days. The devices were stored under dark ambient conditions and a LED light source is used for the periodical characterizations
EL MARMON EN TAFIRA [Material gráfico]
ÁLBUM FAMILIAR CASA DE COLÓNCopia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201
Transparent hybrid solar cells based on silicon nanowires and poly(vinylcarbazole)
Le travail présenté dans ce mémoire porte sur la réalisation et l’étude des cellules solaires PV hybrides à réseaux interpénétrés utilisant les nanofils de silicium. Nos études ont porté essentiellement sur l’optimisation des structures hybrides à base de PVK ou de MEH-PPV mélangé dans leur volume avec une phase de nanofils de silicium, référant aux structures PVK/NFSi et MEH-PPV/NFSi respectivement. Cette étude a montré l’étroite interdépendance entre la morphologie des nanocomposites et les propriétés photovoltaïques des cellules réalisées. Nous avons étudiés l’influence de la concentration des nanofils de silicium sur le processus de dissociation des paires photo-générées. Nous avons également étudié l’effet des traitements thermiques et nous avons mis en évidence un meilleur transfert de charge dans le cas des structures PVK/NFSi. Nous avons aussi observé l’influence bénéfique de la désoxydation ainsi que le traitement de fonctionnalisation des nanofils sur l’amélioration du transfert de charge dans le cas des structures réalisées. En conclusion, nous avons montré que les cellules PV hybrides à réseaux interpénétrés utilisant les nanofils de silicium peuvent être optimisées grâce à la compréhension et au réglage fin du transfert de chargesThe work presented in this thesis focuses on the implementation and study of hybrid solar cells interpenetrating networks using silicon nanowires. Our studies have focused on the optimization of hybrid structures based PVK or MEH-PPV mixed in their volume with silicon nanowires phase, referring to structures PVK/NFSI and MEH-PPV/NFSI respectively. This study showed the close interdependence between morphology and properties of nanocomposites photovoltaic cells made. We studied the influence of the concentration of silicon nanowires on the dissociation process of photo-generated pairs. We also studied the effect of heat treatment and we have demonstrated a better load transfer in the case of structures PVK/NFSI. We also observed the beneficial effect of deoxidation treatment and functionalization of the nanowires on the improvement of charge transfer in the case of structures made. In conclusion, we have shown that the PV hybrid cell using silicon nanowires can be optimized through understanding and fine tuning of the charge transfe
Silicon Nanowire/P3HT Hybrid Solar Cells: Effect of the Electron Localization at Wire Nanodiameters
AbstractPhotoactive hybrid films based on n type silicon nanowires [SiNWs] dispersed in poly(3-hexylthiophene) [P3HT], a p type conjugated polymer known for its good ordering properties, have a main interest for the production of photovoltaic films at a limited cost. Silicon nanowires synthesized at high yield by the oxide assisted growth technique have been dispersed in tetrahydrofuran: THF, and mixed with a P3HT solution in THF to form a blend of the inorganic-organic components in the appropriate proportions. The blend of SiNWs and P3HT have been deposited by spin coating on PEDOT-PSS/ITO substrates leading to the production of 100 nm thick SiNWs/P3HT thin layers of controlled compositions. The quenching of the P3HT fluorescence has shown the effective dissociation of the photogenerated pairs for an optimum composition of 6 SiNWs vol. % in the blend, which is in accordance with the low percolation threshold expected from the high aspect ratio of the nanowires. Current/voltage experiments under illumination have however led to collected photocurrents remaining limited to some 10 μA/cm2 whereas an interesting open circuit voltage of 0.65 V was obtained. It has been possible from surface potential decay experiments to assign the main limiting process to the low electron transport along nanowires of diameter smaller than 10 nm, whereas easy hole transport in the P3HT thickness was obtained. The high densities of silicon surface states acting as electron traps can simultaneously account for efficient charge pair dissociation and low photocurrents in nanosized structures
Synthesis and properties of a photovoltaic cell based on polystyrene-functionalised Si nanowires filled into a poly(N-vinylcarbazole) matrix
International audienc
Lifetime of inkjet printing OPV modules for indoor applications.
International audienceHarvesting energy from their environment could be an ideal solution for an autonomous function of numerous small electronics. Organic Photovoltaic (OPV) cells are a promising technology for next generation photovoltaic cells combining novel properties such as light weight, flexibility, or color design with large-scale manufacturing with low environmental impact. Furthermore, the OPV cells are good solution for Indoor applications. In this field, DRACULA TECHNOLOGIES (DT) has developed inkjet printing organic solar cells and modules. The great advantage of inkjet printing as a digital technology is the freedom of forms and designs, large area organic modules with different artistic shapes. The stability of OPV cells are critical element for up-scaling and commercialization of this technology. To evaluate the stability and lifetime of the DT modules, the ISOS-D-1 (shelf lifetime) protocol is applied for 175 days. The devices were stored under dark ambient conditions and a LED light source is used for the periodical characterizations
High-Performance inkjet Printed Flexible Organic solar cells and modules Using Silver nanowires as Transparent Electrodes
International audienc
Toward Indoor Simulations of OPV Cells for Visible Light Communication and Energy Harvesting
International audienc
Banc de caractérisations pour les applications indoor des dispositifs photovoltaïques
International audienceQue ce soit dans la vie quotidienne des particuliers ou dans l'industrie, les objets connectés sont de plus en plus répandus. Des étiquettes électroniques aux multiples capteurs, il est question de 50 milliards d'objets connectés à l'horizon 2020.Or, ces appareils fonctionnent pour la plupart sur piles ou batteries qu'il faut bien remplacer à un moment ou un autre. Cela représente un coût financier mais aussi environnemental très élevé. Il existe des solutions d'alimentation alternatives, basées sur la récupération d'énergie et en particulier le photovoltaïque. Dans ce domaine, DRACULA TECHNOLOGIES a développé une solution alternative durable LAYER® (Light As Your Energetic Response) : il s'agit d'un procédé d'impression à jet d'encre qui permet de fabriquer des modules photovoltaïques organiques qui vont pouvoir alimenter des objets connectés basse consommation. Les conditions lumineuses auxquelles sont exposés ces objets connectés étant très diverses, Dracula Technologies travaille avec l’équipe OPTO-PV du laboratoire IM2NP sur une base de données des univers lumineux qui sert à calibrer la fabrication des modules photovoltaïques et également sur la caractérisation de ces modules