82 research outputs found

    Date 2013-02-18

    Get PDF
    Description Auxiliary functions and data sets for _Ecological Models and Data_, a book presenting maximum likelihood estimation and related topics for ecologists (ISBN 978-0-691-12522-0

    Fitting Linear Mixed-Effects Models Using lme4

    Get PDF
    Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011

    The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery.</p> <p>Results</p> <p>We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug <it>Oncopeltus fasciatus</it>, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing <it>O. fasciatus </it>accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in <it>de novo </it>transcriptome analyses.</p> <p>Conclusions</p> <p>Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high-throughput gene discovery for organisms lacking a sequenced genome. These data will have applications to the study of the evolution of arthropod genes and genetic pathways, and to the wider evolution, development and genomics communities working with emerging model organisms.</p> <p>[The sequence data from this study have been submitted to GenBank under study accession number SRP002610 (<url>http://www.ncbi.nlm.nih.gov/sra?term=SRP002610</url>). Custom scripts generated are available at <url>http://www.extavourlab.com/protocols/index.html</url>. Seven Additional files are available.]</p

    Is Chytridiomycosis an Emerging Infectious Disease in Asia?

    Get PDF
    The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused dramatic amphibian population declines and extinctions in Australia, Central and North America, and Europe. Bd is associated with >200 species extinctions of amphibians, but not all species that become infected are susceptible to the disease. Specifically, Bd has rapidly emerged in some areas of the world, such as in Australia, USA, and throughout Central and South America, causing population and species collapse. The mechanism behind the rapid global emergence of the disease is poorly understood, in part due to an incomplete picture of the global distribution of Bd. At present, there is a considerable amount of geographic bias in survey effort for Bd, with Asia being the most neglected continent. To date, Bd surveys have been published for few Asian countries, and infected amphibians have been reported only from Indonesia, South Korea, China and Japan. Thus far, there have been no substantiated reports of enigmatic or suspected disease-caused population declines of the kind that has been attributed to Bd in other areas. In order to gain a more detailed picture of the distribution of Bd in Asia, we undertook a widespread, opportunistic survey of over 3,000 amphibians for Bd throughout Asia and adjoining Papua New Guinea. Survey sites spanned 15 countries, approximately 36° latitude, 111° longitude, and over 2000 m in elevation. Bd prevalence was very low throughout our survey area (2.35% overall) and infected animals were not clumped as would be expected in epizootic events. This suggests that Bd is either newly emerging in Asia, endemic at low prevalence, or that some other ecological factor is preventing Bd from fully invading Asian amphibians. The current observed pattern in Asia differs from that in many other parts of the world

    Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis

    Get PDF
    The Independent Action Hypothesis (IAH) states that pathogenic individuals (cells, spores, virus particles etc.) behave independently of each other, so that each has an independent probability of causing systemic infection or death. The IAH is not just of basic scientific interest; it forms the basis of our current estimates of infectious disease risk in humans. Despite the important role of the IAH in managing disease interventions for food and water-borne pathogens, experimental support for the IAH in bacterial pathogens is indirect at best. Moreover since the IAH was first proposed, cooperative behaviors have been discovered in a wide range of microorganisms, including many pathogens. A fundamental principle of cooperation is that the fitness of individuals is affected by the presence and behaviors of others, which is contrary to the assumption of independent action. In this paper, we test the IAH in Bacillus thuringiensis (B.t), a widely occurring insect pathogen that releases toxins that benefit others in the inoculum, infecting the diamondback moth, Plutella xylostella. By experimentally separating B.t. spores from their toxins, we demonstrate that the IAH fails because there is an interaction between toxin and spore effects on mortality, where the toxin effect is synergistic and cannot be accommodated by independence assumptions. Finally, we show that applying recommended IAH dose-response models to high dose data leads to systematic overestimation of mortality risks at low doses, due to the presence of synergistic pathogen interactions. Our results show that cooperative secretions can easily invalidate the IAH, and that such mechanistic details should be incorporated into pathogen risk analysis
    corecore