82 research outputs found
Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa
An unusual sediment-hosted manganese deposit is described from the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. MnO contents up to 15 wt.% were observed in marine clastic and chemical sedimentary rocks. Mn enrichment is interpreted to have resulted from the hydrothermal alteration of manganiferous shale and BIF parent rocks, the primary MnO contents of which are as high as 8.5 wt.%. A detailed mineralogical and petrographic study shows that these parent rocks are characterized by manganoan siderite, ferroan rhodochrosite and other Mn-Fe-rich mineral phases, such as kutnohorite and Fe-Mn-chlorite. Their hypogene alteration gave rise to a diversification of mineral assemblages where ferroan tephroite, calcian rhodochrosite, rhodochrosite, pyrochroite, pyrophanite, cronstedtite, manganoan Fe-rich chlorite and manganoan phlogopite partially or totally replaced the previous mineral assemblage. Thermodynamic modeling performed on chlorite phases associated with the described mineral assemblages illustrates a decrease of average crystallization temperatures from ca. 310 °C during early metamorphic stages to ca. 250 °C during a hydrothermal stage. Mineral transformation processes were thus related to retrograde metamorphism and/or hydrothermal alteration post-dating metamorphism and gave rise to progressive Mn enrichment from unaltered parent to altered rocks. The timing of hypogene alteration was constrained by 40Ar/39Ar dating to between about 1500 and 1100 Ma ago, reflecting tectonic processes associated with the Namaqua-Natal orogeny along the southern Kaapvaal Craton margin. Manganiferous shale and BIF of the Mozaan Group may represent the oldest known examples of primary sedimentary Mn deposition, related to oxidation of dissolved Mn(II) by free oxygen in a shallow marine environment. Oxygenic photosynthesis would have acted as a first-order control during Mn precipitation. This hypothesis opens a new perspective for better constraining secular evolution of sediment-hosted mineral deposits linked to oxygen levels in the atmosphere-hydrosphere system during the Archean Eon
Preparation and structural stability of ordered nanocomposites: opal matrix - lead titanates
The conditions for the formation of nanocomposites based on the basis of lattice packings of SiO[2] nanospheres (opal matrices) with included crystallites of lead titanates (PbTiO[3] and PbTi[3]O[7]) in interspherical nanospacing are considered. For the formation of nanocomposites are used sample opal matrices with dimensions of single-domain regions >=0,1 mm.{3} The diameter of SiO[2] nanospheres was ~260 nm. Obtained nanocomposites volume >2 cm{3} in filling >20% of interspherical nanospacing PbTiO[3], PbTi[3]O[7] crystallites were size of 16-36 nm. Using X-ray diffraction and Raman spectroscopy are studied composition and structural stability when heated nanocomposites to 550°C, which allowed the identification of a local phase transition with change of the space group. The dependence of the composition of synthesized materials on the conditions of their preparation is submitted
Enhancing the gain by quantum coherence in terahertz quantum cascade lasers
We propose and study GaAs/AlGaAs terahertz frequency quantum cascade lasers in which mid-infrared radiation is used as a coherent drive for enhancing the terahertz gain
Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence
A new scheme for infrared generation without population inversion between
subbands in quantum-well and quantum-dot lasers is presented and documented by
detailed calculations. The scheme is based on the simultaneous generation at
three frequencies: optical lasing at the two interband transitions which take
place simultaneously, in the same active region, and serve as the coherent
drive for the IR field. This mechanism for frequency down-conversion does not
rely upon any ad hoc assumptions of long-lived coherences in the semiconductor
active medium. And it should work efficiently at room temperature with
injection current pumping. For optimized waveguide and cavity parameters, the
intrinsic efficiency of the down-conversion process can reach the limiting
quantum value corresponding to one infrared photon per one optical photon. Due
to the parametric nature of IR generation, the proposed inversionless scheme is
especially promising for long-wavelength (far- infrared) operation.Comment: 4 pages, 1 Postscript figure, Revtex style. Replacement corrects a
printing error in the authors fiel
Coherent instabilities in a semiconductor laser with fast gain recovery
We report the observation of a coherent multimode instability in quantum
cascade lasers (QCLs), which is driven by the same fundamental mechanism of
Rabi oscillations as the elusive Risken-Nummedal-Graham-Haken (RNGH)
instability predicted 40 years ago for ring lasers. The threshold of the
observed instability is significantly lower than in the original RNGH
instability, which we attribute to saturable-absorption nonlinearity in the
laser. Coherent effects, which cannot be reproduced by standard laser rate
equations, can play therefore a key role in the multimode dynamics of QCLs, and
in lasers with fast gain recovery in general.Comment: 5 pages, 4 figure
Nonlinear Dynamics in Semiconductor Ring Lasers: From Phase Turbulence to Solitons
The recent study of ring quantum cascade lasers [1] , [2] (QCLs, Fig. 1a ) revealed a new laser instability. It is triggered by phase turbulence akin to the wave instabilities that occur in other nonlinear systems such as fluids, superconductors and Bose-Einstein condensates. The choice of the ring geometry took inspiration from Kerr combs [3] , that are commonly generated in passive ring microresonators and have attracted great attention within the photonics community in the last years thanks to their rich physics
Coherent radiation from neutral molecules moving above a grating
We predict and study the quantum-electrodynamical effect of parametric
self-induced excitation of a molecule moving above the dielectric or conducting
medium with periodic grating. In this case the radiation reaction force
modulates the molecular transition frequency which results in a parametric
instability of dipole oscillations even from the level of quantum or thermal
fluctuations. The present mechanism of instability of electrically neutral
molecules is different from that of the well-known Smith-Purcell and transition
radiation in which a moving charge and its oscillating image create an
oscillating dipole.
We show that parametrically excited molecular bunches can produce an easily
detectable coherent radiation flux of up to a microwatt.Comment: 4 page
Stable mode-locked pulses from mid-infrared semiconductor lasers
We report the unequivocal demonstration of mid-infrared mode-locked pulses
from a semiconductor laser. The train of short pulses was generated by actively
modulating the current and hence the optical gain in a small section of an
edge-emitting quantum cascade laser (QCL). Pulses with pulse duration at
full-width-at-half-maximum of about 3 ps and energy of 0.5 pJ were
characterized using a second-order interferometric autocorrelation technique
based on a nonlinear quantum well infrared photodetector. The mode-locking
dynamics in the QCLs was modelled and simulated based on Maxwell-Bloch
equations in an open two-level system. We anticipate our results to be a
significant step toward a compact, electrically-pumped source generating
ultrashort light pulses in the mid-infrared and terahertz spectral ranges.Comment: 26 pages, 4 figure
Frequency combs induced by phase turbulence
Wave instability—the process that gives rise to turbulence in hydrodynamics1—represents the mechanism by which a small disturbance in a wave grows in amplitude owing to nonlinear interactions. In photonics, wave instabilities result in modulated light waveforms that can become periodic in the presence of coherent locking mechanisms. These periodic optical waveforms are known as optical frequency combs2–4. In ring microresonator combs5,6, an injected monochromatic wave becomes destabilized by the interplay between the resonator dispersion and the Kerr nonlinearity of the constituent crystal. By contrast, in ring lasers instabilities are considered to occur only under extreme pumping conditions7,8. Here we show that, despite this notion, semiconductor ring lasers with ultrafast gain recovery9,10 can enter frequency comb regimes at low pumping levels owing to phase turbulence11—an instability known to occur in hydrodynamics, superconductors and Bose–Einstein condensates. This instability arises from the phase–amplitude coupling of the laser field provided by linewidth enhancement12, which produces the needed interplay of dispersive and nonlinear effects. We formulate the instability condition in the framework of the Ginzburg–Landau formalism11. The localized structures that we observe share several properties with dissipative Kerr solitons, providing a first step towards connecting semiconductor ring lasers and microresonator frequency combs13
- …