13,259 research outputs found
Wetting, roughness and flow boundary conditions
We discuss how the wettability and roughness of a solid impacts its
hydrodynamic properties. We see in particular that hydrophobic slippage can be
dramatically affected by the presence of roughness. Owing to the development of
refined methods for setting very well-controlled micro- or nanotextures on a
solid, these effects are being exploited to induce novel hydrodynamic
properties, such as giant interfacial slip, superfluidity, mixing, and low
hydrodynamic drag, that could not be achieved without roughness.Comment: 28 pages, 14 figures, 4 tables; accepted for publication in Journal
of Physics: Condensed Matte
Hydrodynamic interaction with super-hydrophobic surfaces
Patterned surfaces with large effective slip lengths, such as
super-hydrophobic surfaces containing trapped gas bubbles, have the potential
to reduce hydrodynamic drag. Based on lubrication theory, we analyze an
approach of a hydrophilic disk to such a surface. The drag force is predicted
analytically and formulated in terms of a correction function to the Reynolds
equation, which is shown to be the harmonic mean of corrections expressed
through effective slip lengths in the two principal (fastest and slowest)
orthogonal directions. The reduction of drag is especially pronounced for a
thin (compared to texture period) gap. It is not really sensitive to the
pattern geometry, but depends strongly on the fraction of the gas phase and
local slip length at the gas area.Comment: 20 pages, 7 figure
Effective slip in pressure-driven flow past super-hydrophobic stripes
Super-hydrophobic array of grooves containing trapped gas (stripes), have the
potential to greatly reduce drag and enhance mixing phenomena in microfluidic
devices. Recent work has focused on idealized cases of stick-perfect slip
stripes, with limited guidance. Here, we analyze the experimentally relevant
situation of a pressure-driven flow past striped slip-stick surfaces with
arbitrary local slip at the gas sectors. We derive analytical formulas for
maximal (longitudinal) and minimal (transverse) directional effective slip
lengths that can be used for any surface slip fraction (validated by numerical
calculations). By representing eigenvalues of the slip length-tensor, they
allow us to obtain the effective slip for any orientation of stripes with
respect to the mean flow. Our results imply that flow past stripes is
controlled by the ratio of the local slip length to texture size. In case of a
large (compared to the texture period) slip at the gas areas, surface
anisotropy leads to a tensorial effective slip, by attaining the values
predicted earlier for a perfect local slip. Both effective slip lengths and
anisotropy of the flow decrease when local slip becomes of the order of texture
period. In the case of small slip, we predict simple surface-averaged,
isotropic flows (independent of orientation). These results provide a framework
for the rational design of super-hydrophobic surfaces and devices.Comment: 10 pages, 4 figures, revised versio
Wetting, roughness and hydrodynamic slip
The hydrodynamic slippage at a solid-liquid interface is currently at the
center of our understanding of fluid mechanics. For hundreds of years this
science has relied upon no-slip boundary conditions at the solid-liquid
interface that has been applied successfully to model many macroscopic
experiments, and the state of this interface has played a minor role in
determining the flow. However, the problem is not that simple and has been
revisited recently. Due to the change in the properties of the interface, such
as wettability and roughness, this classical boundary condition could be
violated, leading to a hydrodynamic slip. In this chapter, we review recent
advances in the understanding and expectations for the hydrodynamic boundary
conditions in different situations, by focussing mostly on key papers from past
decade. We highlight mostly the impact of hydrophobicity, roughness, and
especially their combination on the flow properties. In particular, we show
that hydrophobic slippage can be dramatically affected by the presence of
roughness, by inducing novel hydrodynamic phenomena, such as giant interfacial
slip, superfluidity, mixing, and low hydrodynamic drag. Promising directions
for further research are also discussed.Comment: 36 pages, 19 figures. This chapter would be a part of "Nanoscale
liquid interfaces" boo
Generalized Density Matrix Revisited: Microscopic Approach to Collective Dynamics in Soft Spherical Nuclei
The generalized density matrix (GDM) method is used to calculate
microscopically the parameters of the collective Hamiltonian. Higher order
anharmonicities are obtained consistently with the lowest order results, the
mean field [Hartree-Fock-Bogoliubov (HFB) equation] and the harmonic potential
[quasiparticle random phase approximation (QRPA)]. The method is applied to
soft spherical nuclei, where the anharmonicities are essential for restoring
the stability of the system, as the harmonic potential becomes small or
negative. The approach is tested in three models of increasing complexity: the
Lipkin model, model with factorizable forces, and the quadrupole plus pairing
model.Comment: submitted to Physical Review C on 08 May, 201
Light-cone sum rules for the transitions for real photons
We examine the radiative transition at the real photon
point using the framework of light-cone QCD sum rules. In particular,
the sum rules for the transition form factors and are
determined up to twist 4. The result for agrees with experiment within
10% accuracy. The agreement for is also reasonable. In addition, we
derive new light-cone sum rules for the magnetic moments of nucleons, with a
complete account of twist-4 corrections based on a recent reanalysis of photon
distribution amplitudes.Comment: 34 pages, 9 figures, revised version, published in Phys. Rev. D, one
misplaced reference correcte
New nuclear three-body clusters \phi{NN}
Binding energies of three-body systems of the type \phi+2N are estimated. Due
to the strong attraction between \phi-meson and nucleon, suggested in different
approaches, bound states can appear in systems like \phi+np (singlet and
triplet) and \phi+pp. This indicates the principal possibility of the formation
of new nuclear clusters
Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules
We study the neutron electric dipole moment in the presence of the
CP-violating operators up to the dimension five in terms of the QCD sum rules.
It is found that the OPE calculation is robust when exploiting a particular
interpolating field for neutron, while there exist some uncertainties on the
phenomenological side. By using input parameters obtained from the lattice
calculation, we derive a conservative limit for the contributions of the CP
violating operators. We also show the detail of the derivation of the sum
rules.Comment: 33 pages, 5 figure
- …