11,366 research outputs found

    Generalized Density Matrix Revisited: Microscopic Approach to Collective Dynamics in Soft Spherical Nuclei

    Full text link
    The generalized density matrix (GDM) method is used to calculate microscopically the parameters of the collective Hamiltonian. Higher order anharmonicities are obtained consistently with the lowest order results, the mean field [Hartree-Fock-Bogoliubov (HFB) equation] and the harmonic potential [quasiparticle random phase approximation (QRPA)]. The method is applied to soft spherical nuclei, where the anharmonicities are essential for restoring the stability of the system, as the harmonic potential becomes small or negative. The approach is tested in three models of increasing complexity: the Lipkin model, model with factorizable forces, and the quadrupole plus pairing model.Comment: submitted to Physical Review C on 08 May, 201

    Angular asymmetries as a probe for anomalous contributions to HZZ vertex at the LHC

    Full text link
    In this article, the prospects for studying the tensor structure of the HZZ vertex with the LHC experiments are presented. The structure of tensor couplings in Higgs di-boson decays is investigated by measuring the asymmetries and by studing the shapes of the final state angular distributions. The expected background contributions, detector resolution, and trigger and selection efficiencies are taken into account. The potential of the LHC experiments to discover sizeable non-Standard Model contributions to the HZZ vertex with 300  fb1300\;{\rm fb}^{-1} and 3000  fb13000\;{\rm fb}^{-1} is demonstrated.Comment: 9 pages, 8 figures; added 3 references for section 1; added 3 references, added missing unit GeV in Table III and 4 clarifying sentences to the tex

    More on the Tensor Response of the QCD Vacuum to an External Magnetic Field

    Full text link
    In this Letter we discuss a few issues concerning the magnetic susceptibility of the quark condensate and the Son-Yamamoto (SY) anomaly matching equation. It is shown that the SY relation in the IR implies a nontrivial interplay between the kinetic and WZW terms in the chiral Lagrangian. It is also demonstrated that in a holographic framework an external magnetic field triggers mixing between scalar and tensor fields. Accounting for this, one may calculate the magnetic susceptibility of the quark condensate to all orders in the magnetic field.Comment: 20 pages, 2 figure

    Exclusive photoproduction of hard dijets and magnetic susceptibility of QCD vacuum

    Get PDF
    We argue that coherent production of hard dijets by linearly polarized real photons can provide direct evidence for chirality violation in hard processes, the first measurement of the magnetic susceptibility of the quark condensate and the photon distribution amplitude. It can also serve as a sensitive probe of the generalized gluon parton distribution. Numerical calculations are presented for HERA kinematics.Comment: 4 pages, 4 figure

    On the equivalence between real and superfield 5d formalisms

    Full text link
    We explicitly prove the equivalence and construct a dictionary between two different supersymmetric formalisms for five-dimensional theories commonly used in the literature. One is the real formalism, which consists in doubling the number of degrees of freedom and then imposing reality constraints and the other is the usual superfield formalism.Comment: 19 page

    Ectoplasm with an Edge

    Full text link
    The construction of supersymmetric invariant actions on a spacetime manifold with a boundary is carried out using the "ectoplasm" formalism for the construction of closed forms in superspace. Non-trivial actions are obtained from the pull-backs to the bosonic bodies of closed but non-exact forms in superspace; finding supersymmetric invariants thus becomes a cohomology problem. For a spacetime with a boundary, the appropriate mathematical language changes to relative cohomology, which we use to give a general formulation of off-shell supersymmetric invariants in the presence of boundaries. We also relate this construction to the superembedding formalism for the construction of brane actions, and we give examples with bulk spacetimes of dimension 3, 4 and 5. The closed superform in the 5D example needs to be constructed as a Chern-Simons type of invariant, obtained from a closed 6-form displaying Weil triviality.Comment: 25 page

    Possible eta-mesic 3He states within the finite rank approximation

    Full text link
    We extend the method of time delay proposed by Eisenbud and Wigner, to search for unstable states formed by eta mesons and the 3He nucleus. Using few body equations to describe eta-3He elastic scattering, we predict resonances and unstable bound states within different models of the eta-N interaction. The eta-3He states predicted within this novel approach are in agreement with the recent claim of the evidence of eta-mesic 3He made by the TAPS collaboration.Comment: 10 pages LaTex, 3 figure

    Local energy-density functional approach to many-body nuclear systems with s-wave pairing

    Get PDF
    The ground-state properties of superfluid nuclear systems with ^1S_0 pairing are studied within a local energy-density functional (LEDF) approach. A new form of the LEDF is proposed with a volume part which fits the Friedman- Pandharipande and Wiringa-Fiks-Fabrocini equation of state at low and moderate densities and allows an extrapolation to higher densities preserving causality. For inhomogeneous systems, a surface term with two free parameters is added. In addition to the Coulomb direct and exchange interaction energy, an effective density-dependent Coulomb-nuclear correlation term is included with one more free parameter, giving a contribution of the same order of magnitude as the Nolen-Schiffer anomaly in Coulomb displacement energy. The root-mean-square deviations from experimental masses and radii with the proposed LEDF come out about a factor of two smaller than those obtained with the conventional functionals based on the Skyrme or finite-range Gogny force, or on the relativistic mean-field theory. The generalized variational principle is formulated leading to the self-consistent Gor'kov equations which are solved exactly, with physical boundary conditions both for the bound and scattering states. With a zero-range density-dependent cutoff pairing interaction incorporating a density-gradient term, the evolution of differential observables such as odd-even mass differences and staggering in charge radii, is reproduced reasonably well, including kinks at magic neutron numbers. An extrapolation to infinite nuclear matter is discussed. We study also the dilute limit in both the weak and strong coupling regime.Comment: 19 pages, 8 figures. LaTeX, with modified cls file supplied. To be published in vol. 3 of the series "Advances in Quantum Many-Body Theory", World Scientific (Proceedings of the MBX Conference, Seattle, September 10-15, 1999

    Maximally Supersymmetric Yang-Mills in five dimensions in light-cone superspace

    Full text link
    We formulate maximally supersymmetric Yang-Mills theory in five dimensions in light-cone superspace. The light-cone Hamiltonian is of the quadratic form and the theory can be understood as an oxidation of the N=4 Super Yang-Mills Theory in four dimensions. We specifically study three-point counterterms and show how these counterterms vanish on-shell. This study is a preliminary to set up the technique in order to study possible four-point counterterms.Comment: 25 pages, typos corrected, references adde

    Hot Gauge Theories and ZNZ_{N} Phases

    Full text link
    In this paper the several aspects of the ZNZ_{N} symmetry in gauge theories at high temperatures are discussed. The metastable ZNZ_{N} bubbles in the SU(N)SU(N) gauge theories with fermions may have, generically, unacceptable thermodynamic behavior. Their free energy FT4F \propto T^4 with a positive proportionality constant. This leads not only to negative pressure but also to negative specific heat and, more seriously, to negative entropy. We argue that although such domains are important in the Euclidean theory, they cannot be interpreted as physical domains in Minkowski space. The related problem is connected with the analysis of the high-temperature limit of the confining phase. Using the two-dimensional QCD with adjoint fermions as a toy model we shall demonstrate that in the light fermion limit in this theory there is no breaking of the ZNZ_{N} symmetry in the high-temperature limit and thus there are no ZNZ_{N} bubbles.Comment: preprint PUPT-1415, 21
    corecore