2,842 research outputs found

    Ultrafast heating and resolution of recorded crystalline marks in phase-change media

    Get PDF
    Copyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 104 (2008) and may be found at http://link.aip.org/link/?JAPIAU/104/104912/1This work presents an analytical study of the thermally activated amorphous-to-crystalline phase-change process when the heating source has a delta function temporal profile. This simulates the case of ultrafast heating where crystallization in the amorphous phase-change medium occurs during cooling. The study produced closed-form expressions that predict the necessary peak temperature, and hence energy density, in the phase-change medium for successful crystallization during ultrafast annealing as functions of the kinetic and thermal parameters of the medium. Closed-form expressions were also derived that provide estimates of the final crystalline mark widths and tail lengths when phase change has ceased. The analysis indicated the need to reduce the activation energy of crystallization and the thermal diffusivity of the medium to reduce the initial peak temperature, produced by the heating source, to avoid melting, to increase the crystallization rate, to achieve sufficient levels of crystalline fractions during cooling, and to reduce the size of recorded crystalline marks. Perturbation analysis was carried out to study the effects of latent heat of crystallization during the fast kinetics phase. The result was reductions in the cooling rate of the phase-change material, thus requiring lower peak temperatures to achieve higher volumes of crystalline fraction. Nevertheless, the effects of heat release during crystallization were found to be modest for the class of current phase-change material used in data storage

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (Δ\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (Ο\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (≳0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of Ο\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    On Random Sampling and Fourier Transform Estimation in Sea Waves Prediction

    Get PDF
    Improving the safety of a wide range of launch and recovery operations is of great international maritime interest. Deterministic sea wave prediction (DSWP) is a relatively new branch of science that can offer such opportunities by predicting the actual shape of the sea surface and its evolution for short time in the future. Fourier transform technique is the main building block in DSWP, which requires measurements of the sea surface. Nonetheless, uniformly sampled measurements of the sea surface cannot be practically achieved for various reasons. Conventional X-band radars are the most realistic candidate to provide a low-cost convenient source of two-dimensional wave profile information for DSWP purposes. Ship movement and mechanically rotating scanning antennas are among sources of irregularity in sea surface sampling. This in turn introduces errors when traditional Fourier transform based wave prediction methods are used. In this paper we show that by modelling the radar sampling instants as random variables and using the estimator of Tarczynski and Allay to process the samples, a reliable solution for DSWP can be constituted

    Scaling of the electron dissipation range of solar wind turbulence

    Full text link
    Electron scale solar wind turbulence has attracted great interest in recent years. Clear evidences have been given from the Cluster data that turbulence is not fully dissipated near the proton scale but continues cascading down to the electron scales. However, the scaling of the energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 years of the Cluster search-coil magnetometer (SCM) waveforms measured in the solar wind and perform a statistical study of the magnetic energy spectra in the frequency range [1,1801, 180]Hz. We show that a large fraction of the spectra exhibit clear breakpoints near the electon gyroscale ρe\rho_e, followed by steeper power-law like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that will be discussed in detail. We compare our results to recent ones reported in other studies and discuss their implication on the physical mechanisms and the theoretical modeling of energy dissipation in the SW.Comment: 10 pages, submitte

    The effect of thermal anisotropies during crystallization in phase-change recording media

    Get PDF
    types: ArticleCopyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 104 (2008) and may be found at http://dx.doi.org/10.1063/1.2968447The problem discussed is the significance of anisotropies in the thermal parameters of different phases of phase-change materials as used for data storage purposes during recording. The particular phase change in interest is from the amorphous-to-crystalline state. Applying the method of correlation moment analysis produced upper estimators for the time dependence of the width of the crystalline mark and the time at which phase change ceases based on the heat flow process alone. These upper estimators are closed-form analytical expressions that can be used to estimate the recording resolution for any general spatial profile of initial temperature in the medium. This analysis showed that, up to a first order, the specific heat anisotropies have considerably less influence on the heat flow than the thermal conductivity differences. In general, for the material parameters used in phase-change data storage applications, the theory showed that the anisotropy in thermal parameters can be neglected. (C) 2008 American Institute of Physics

    A Hot Helium Plasma in the Galactic Center Region

    Full text link
    Recent X-ray observations by the space mission Chandra confirmed the astonishing evidence for a diffuse, hot, thermal plasma at a temperature of 9. 10710^7 K (8 keV) found by previous surveys to extend over a few hundred parsecs in the Galactic Centre region. This plasma coexists with the usual components of the interstellar medium such as cold molecular clouds and a soft (~0.8 keV) component produced by supernova remnants, and its origin remains uncertain. First, simple calculations using a mean sound speed for a hydrogen-dominated plasma have suggested that it should not be gravitationally bound, and thus requires a huge energy source to heat it in less than the escape time. Second, an astrophysical mechanism must be found to generate such a high temperature. No known source has been identified to fulfill both requirements. Here we address the energetics problem and show that the hot component could actually be a gravitationally confined helium plasma. We illustrate the new prospects this opens by discussing the origin of this gas, and by suggesting possible heating mechanisms.Comment: 9 pages, accepted for publication in APJ

    Properties of AGN coronae in the NuSTAR era – II. Hybrid plasma

    Get PDF
    The corona, a hot cloud of electrons close to the centre of the accretion disc, produces the hard X-ray power-law continuum commonly seen in luminous active galactic nuclei. The continuum has a high-energy turnover, typically in the range of one to several 100 keV and is suggestive of Comptonization by thermal electrons. We are studying hard X-ray spectra of AGN obtained with NuSTAR after correction for X-ray reflection and under the assumption that coronae are compact, being only a few gravitational radii in size as indicated by reflection and reverberation modelling. Compact coronae raise the possibility that the temperature is limited and indeed controlled by electron–positron pair production, as explored earlier (Paper I). Here, we examine hybrid plasmas in which a mixture of thermal and non-thermal particles is present. Pair production from the non-thermal component reduces the temperature leading to a wider temperature range more consistent with observations
    • 

    corecore