7,102 research outputs found

    Thermodynamical properties of metric fluctuations during inflation

    Full text link
    I study a thermodynamical approach to scalar metric perturbations during the inflationary stage. In the power-law expanding universe here studied, I find a negative heat capacity as a manifestation of superexponential growing for the number of states in super Hubble scales. The power spectrum depends on the Gibbons-Hawking and Hagedorn temperatures.Comment: 7 pages, no figures (accepted to publication in General Relativity and Gravitation

    A confirmation of agreement of different approaches for scalar gauge-invariant metric perturbations during inflation

    Get PDF
    We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations in the framework of a single field inflationary model where the quasi-exponential expansion is driven by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.Comment: Version accepted in EPJC with new title. 11 pages, no figure

    Evidence for narrow resonant structures at W≈1.68W \approx 1.68 and W≈1.72W \approx 1.72 GeV in real Compton scattering off the proton

    Get PDF
    First measurement of the beam asymmetry Σ\Sigma for Compton scattering off the proton in the energy range Eγ=0.85−1.25E_{\gamma}=0.85 - 1.25 GeV is presented. The data reveals two narrow structures at Eγ=1.036E_{\gamma}= 1.036 and Eγ=1.119E_{\gamma}=1.119 GeV. They may signal narrow resonances with masses near 1.681.68 and 1.721.72 GeV, or they may be generated by the sub-threshold KΛK\Lambda and ωp\omega p production. Their decisive identification requires additional theoretical and experimental efforts.Comment: Published versio
    • …
    corecore