17 research outputs found
Interfaces cerveau-ordinateur et jeux sérieux : adaptation aux patients schizophrènes
National audienceBrain-computer interfaces (BCI) can be used as a rehabilitation tool for a subject with disabilities. Their use for compensation of severe motor disabilities has already been evaluated. Here we propose to use a BCI for rehabilitation purposes in the framework of mental handicap caused by schizophrenia. We plan to use serious games for patient rehabilitation through a reduction of associated psychiatric disorders. We focus on the necessity of adapting the BCI to this specific situation and on the importance of involving the patient early in the process, i.e. in the development stage, in order to maximize performance and facilitate future rehabilitation.Les interfaces cerveau-ordinateur (BCI) peuvent être utilisées comme outil de rééducation pour un sujet en situation de handicap. Leur utilisation dans le cadre d’un handicap moteur a déjà fait ses preuves. Nous proposons ici de les utiliser dans le cadre d’un handicap psychique : la schizophrénie, au travers de jeux sérieux pour la rééducation des troubles psychiques associés. Nous soulignons l’importance d’adapter les BCI utilisées au handicap mais aussi l’importance d’impliquer le patient dès le début du développement des interfaces afin de maximiser ses performances et ainsi faciliter sa réadaptation
Leaving the lab: a portable and quickly tunable BCI
Although many systems for palliative communication based on non-invasive BCIs have been developped during the last few years, very few projects aim at leaving the research labs and hospitals for helping patients at home. Jon Wolpaw's team at the Wadworth Center1 has developped a portable BCI that has now been used for more than one year on a daily basis by 5 people suffering from ALS. This experiment shows that highly handicaped people greatly benefit from such BCIs that they tend to use during long periods -- between 5 an 8 hours a day -- for communicating with their loved ones, for surfing the web, or reading and writing emails. We also aim at being able to leave the lab with this now mature technology for screening handicaped people at home. This would allow checking easily if a patient can use efficiently a BCI without requiring him to come to the hospital or to a specialized laboratory. From the hardware point of view, this home-screening requires a BCI setup that can be used in any situation: portable, fully autonomous and battery powered. From the software point of view, the machine learning techniques that adapt the BCI to the individual must provide a "good" result within a few seconds rather than an "optimal" result after several minutes or hours of processing
Focusing on human factors while designing a BMI room
International audienceThe research in Brain Machine Interfaces (BMIs), although in rapid expansion, must still be considered at the experimental level since no widely available BMI system exists for helping people with motor disabilities in everyday life. Transferring BMI applications from laboratories to dedicated clinical services - and later to patient homes - implies, first of all, the specification of perfectly adapted experimental conditions including all the human factors. Our paper surveys various criteria that must be taken into account while designing a room dedicated to BMI experimentation from the ergonomic point of view, as well as adapted experimental protocols. This related work emphasizes the need and the complexity of a global and multidisciplinary approach which places human factors at the centre of the concerns
Interfaces cerveau-ordinateur et rééducation fonctionnelle: étude de cas chez un patient hémiparésique
National audienceLes interfaces cerveau-ordinateur (BCIs: Brain-Computer Interfaces) utilisent l'activité cérébrale d'un individu pour dialoguer avec un ordinateur. L'aide à la communication (outil d'épellation, interface domotique) et la récupération du mouvement (contrôle d'une prothèse ou d'un robot) sont les applications les plus fréquentes des BCIs dans le domaine de l'assistance. L'étude de cas présentée dans cet article montre que les BCIs peuvent également être utilisées dans une approche thérapeutique par neurofeedback pour la rééducation ou la récupération fonctionnelle. Nous décrivons, dans un premier temps, les utilisations thérapeutiques connues des interfaces cerveau-ordinateur. Puis nous présentons une expérience clinique durant laquelle une BCI a été utilisée comme outil d'aide à la rééducation motrice par un patient atteint d'une hémiparésie du côté droit
Hybrid BCI Coupling EEG and EMG for Severe Motor Disabilities
AbstractIn this paper, we are studying hybrid Brain-Computer Interfaces (BCI) coupling joystick data, electroencephalogram (EEG – electrical activity of the brain) and electromyogram (EMG – electrical activity of muscles) activities for severe motor disabilities. We are focusing our study on muscular activity as a control modality to interact with an application. We present our data processing and classification technique to detect right and left hand movements. EMG modality is well adapted for DMD patients, because less strength is needed to detect movements in contrast to conventional interfaces like joysticks. Across virtual reality tools, we believe that users will be more able to understand how to interact with such kind of interactive systems. This first part of our study report some very good results concerning the detection of hand movements, according to muscular channel, on healthy subjects
Vers une BCI utilisable en dehors du milieu clinique
National audienceUne interface cerveau-ordinateur (BCI: Brain-Computer Interface) est un système permettant la communication directe entre un individu et un ordinateur sans aucune activité mus-culaire. Dans une BCI, l'activité cérébrale de l'utilisateur est enregistrée, analysée et traduite en commandes destinées à l'ordinateur. Nous présentons ici quelques unes des nom-breuses techniques de communication palliative BCI qui ont été décrites dans la littérature depuis quelques années, en faisant la distinction entre les interfaces qualiées de syn-chrones et celles qualiées d'asynchrones. Ensuite, nous ex-posons un bref état de l'art de la recherche sur les BCI, no-tamment au niveau européen et français. Nous décrivons les choix technologiques faits par notre équipe an de constituer une plate-forme d'interface cerveau-ordinateur qui soit à la fois aisément transportable et utilisable en dehors du milieu clinique. Enn, nous terminons par une présentation des premiers résultats obtenus sur la base d'un paradigme de type P300 speller
The BCI group in LAGIS at Lille university
id:166Since 2005, when BCI research activities started in our lab -- dealing with classification methods for the P300 Speller [1] -- we have mostly focused our attention on the development of palliative communication interfaces. Like in many labs our BCIs are based on EEG signal analysis, as much from the experimental point of view as from the scientific one. First, we will present the experimental goals of our group in terms of palliation of motor handicap. Then, we will present our scientific contribution to the development of BCI interfaces. These studies have been started thanks to several partners involved in different projects that we will finally clarify
Vers une BCI utilisable en dehors du milieu clinique
National audienceUne interface cerveau-ordinateur (BCI: Brain-Computer Interface) est un système permettant la communication directe entre un individu et un ordinateur sans aucune activité mus-culaire. Dans une BCI, l'activité cérébrale de l'utilisateur est enregistrée, analysée et traduite en commandes destinées à l'ordinateur. Nous présentons ici quelques unes des nom-breuses techniques de communication palliative BCI qui ont été décrites dans la littérature depuis quelques années, en faisant la distinction entre les interfaces qualiées de syn-chrones et celles qualiées d'asynchrones. Ensuite, nous ex-posons un bref état de l'art de la recherche sur les BCI, no-tamment au niveau européen et français. Nous décrivons les choix technologiques faits par notre équipe an de constituer une plate-forme d'interface cerveau-ordinateur qui soit à la fois aisément transportable et utilisable en dehors du milieu clinique. Enn, nous terminons par une présentation des premiers résultats obtenus sur la base d'un paradigme de type P300 speller
Les interfaces Cerveau-Machine pour la palliation du handicap moteur sévère
National audienceLes interfaces cerveau-machine (BMI: Brain-Machine Interface) sont des systèmes de communication directe entre un individu et une machine ne reposant pas sur les canaux de communication standard que sont nos nerfs périphériques et nos muscles. Dans une BMI, l'activité cérébrale de l'utilisateur est enregistrée, analysée et traduite en commandes destinées à la machine. Nous présentons quelques caractéristiques de l'activité cérébrale qui peuvent être exploitées comme source d'information dans une BMI. Ensuite, nous décrivons les principales approches de traitement et de classification des signaux mises en oeuvre dans les BMIs. Nous présentons enfin un état de l'art des différentes interfaces BMI développées jusqu'alors, en nous attachant plus particulièrement à celles dédiées à l'aide aux personnes atteintes d'un handicap moteur sévère dans leur tâche de communication ou de contrôle de machines
Toward a SSSEP-Based BCI Using the Sensory Gating Phenomenon
International audienceA physiological phenomenon named movement-related sensory gating has been described in the literature in the late 80s. To the best of our knowledge, it has not yet been exploited in the BCI domain. We consider that this phenomenon could significantly decrease the resonance-like frequency of Steady State Somatosensory Evoked Potentials (SSSEP) and be exploited as a voluntary command of the user will. We describe our work to retrieve a resonance in user's EEG while applying vibrations under their fingers. Our first results confirm previous works reported in literature concerning SSSEP. We report SSSEP detected on four healthy subjects who received tactile vibration under their right and left index finger at five different frequencies (14, 17, 20, 23 and 26 Hz). The mechanical stimulation was created by a device conceived in our laboratory. This device is based on two C2-tactors piloted by an Arduino. We think that a SSSEP-based BCI using the sensory gating phenomenon could be used soon by DMD (Duchenne Muscular Dystrophy) patients that can perceive vibrations under their skin but are no more able to perform voluntary movements