54 research outputs found

    Planet Engulfment Signatures in Twin Stars

    Full text link
    Planet engulfment can be inferred from enhancement of refractory elements in the photosphere of the engulfing star following accretion of rocky planetary material. Such refractory enrichments are subject to stellar interior mixing processes, namely thermohaline mixing induced by an inverse mean-molecular-weight gradient between the convective envelope and radiative core. Using MESA stellar models, we quantified the strength and duration of engulfment signatures following planet engulfment. We found that thermohaline mixing dominates during the first \sim5-45 Myr post-engulfment, weakening signatures by a factor of \sim2 before giving way to depletion via gravitational settling on longer timescales. Solar metallicity stars in the 0.5-1.2 MM_{\odot} mass range have observable signature timescales of \sim1 Myr-8 Gyr, depending on the engulfing star mass and amount of material engulfed. Early type stars exhibit larger initial refractory enhancements but more rapid depletion. Solar-like stars (MM = 0.9-1.1 MM_{\odot}) maintain observable signatures (>>0.05 dex) over timescales of \sim20 Myr-1.7 Gyr for nominal 10 MM_{\oplus} engulfment events, with longer-lived signatures occurring for low-metallicity and/or hotter stars (1 MM_{\odot}, \sim2-3 Gyr). Engulfment events occurring well after the zero-age main sequence produce larger signals due to suppression of thermohaline mixing by gravitational settling of helium (1 MM_{\odot}, \sim1.5 Gyr). These results indicate that it may be difficult to observe engulfment signatures in solar-like stars that are several Gyr old.Comment: 13 pages, 8 figures; submitted to MNRA

    Long-Term Lithium Abundance Signatures following Planetary Engulfment

    Full text link
    Planetary engulfment events can occur while host stars are on the main sequence. The addition of rocky planetary material during engulfment will lead to refractory abundance enhancements in the host star photosphere, but the level of enrichment and its duration will depend on mixing processes that occur within the stellar interior, such as convection, diffusion, and thermohaline mixing. We examine engulfment signatures by modeling the evolution of photospheric lithium abundances. Because lithium can be burned before or after the engulfment event, it produces unique signatures that vary with time and host star type. Using MESA stellar models, we quantify the strength and duration of these signatures following the engulfment of a 1, 10, or 100 MM_{\oplus} planetary companion with bulk Earth composition, for solar-metallicity host stars with masses ranging from 0.5-1.4 MM_{\odot}. We find that lithium is quickly depleted via burning in low-mass host stars (0.7M\lesssim 0.7 \, M_\odot) on a time scale of a few hundred Myrs, but significant lithium enrichment signatures can last for Gyrs in G-type stars ( ⁣0.9M\sim \! 0.9 \, M_{\odot}). For more massive stars (1.3-1.4 MM_{\odot}), engulfment can enhance internal mixing and diffusion processes, potentially decreasing the surface lithium abundance. Our predicted signatures from exoplanet engulfment are consistent with observed lithium-rich solar-type stars and abundance enhancements in chemically inhomogeneous binary stars.Comment: 13 pages, 9 figures, in review for MNRA

    Data-driven Spectroscopy of Cool Stars at High Spectral Resolution

    Get PDF
    The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties ("labels," i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool (< 4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small, cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer spectra of 141 cool (< 5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for small (< 1 R_⊙) stars of spectral types K and later with accuracies of 68 K in effective temperature (T_(eff)), 5% in stellar radius (R_*), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral resolutions (R < 5000). As M dwarfs are the focus of many future planet-detection surveys, this work can aid efforts to better characterize the cool star population and uncover correlations between cool star abundances and planet occurrence for constraining planet formation theories

    Data-driven Spectroscopy of Cool Stars at High Spectral Resolution

    Get PDF
    The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties ("labels," i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool (< 4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small, cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer spectra of 141 cool (< 5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for small (< 1 R_⊙) stars of spectral types K and later with accuracies of 68 K in effective temperature (T_(eff)), 5% in stellar radius (R_*), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral resolutions (R < 5000). As M dwarfs are the focus of many future planet-detection surveys, this work can aid efforts to better characterize the cool star population and uncover correlations between cool star abundances and planet occurrence for constraining planet formation theories

    Planet Engulfment Detections are Rare According to Observations and Stellar Modeling

    Full text link
    Dynamical evolution within planetary systems can cause planets to be engulfed by their host stars. Following engulfment, the stellar photosphere abundance pattern will reflect accretion of rocky material from planets. Multi-star systems are excellent environments to search for such abundance trends because stellar companions form from the same natal gas cloud and are thus expected to share primordial chemical compositions to within 0.03-0.05 dex. Abundance measurements have occasionally yielded rocky enhancements, but few observations targeted known planetary systems. To address this gap, we carried out a Keck-HIRES survey of 36 multi-star systems where at least one star is a known planet host. We found that only HAT-P-4 exhibits an abundance pattern suggestive of engulfment, but is more likely primordial based on its large projected separation (30,000 ±\pm 140 AU) that exceeds typical turbulence scales in molecular clouds. To understand the lack of engulfment detections among our systems, we quantified the strength and duration of refractory enrichments in stellar photospheres using MESA stellar models. We found that observable signatures from 10 MM_{\oplus} engulfment events last for \sim90 Myr in 1 MM_{\odot} stars. Signatures are largest and longest lived for 1.1-1.2 MM_{\odot} stars, but are no longer observable \sim2 Gyr post-engulfment. This indicates that engulfment will rarely be detected in systems that are several Gyr old.Comment: 15 pages, 12 figures; submitted to MNRA

    Desorption Kinetics and Binding Energies of Small Hydrocarbons

    Get PDF
    Small hydrocarbons are an important organic reservoir in protostellar and protoplanetary environments. Constraints on desorption temperatures and binding energies of such hydrocarbons are needed for accurate predictions of where these molecules exist in the ice versus gas phase during the different stages of star and planet formation. Through a series of temperature programmed desorption experiments, we constrain the binding energies of 2- and 3-carbon hydrocarbons (C_2H_2—acetylene, C_2H_4—ethylene, C_2H_6—ethane, C_3H_4—propyne, C_3H_6—propene, and C_3H_8—propane) to 2200–4200 K in the case of pure amorphous ices, to 2400–4400 K on compact amorphous H_2O, and to 2800–4700 K on porous amorphous H_2O. The 3-carbon hydrocarbon binding energies are always larger than the 2-carbon hydrocarbon binding energies. Within the 2- and 3-carbon hydrocarbon families, the alkynes (i.e., least-saturated) hydrocarbons exhibit the largest binding energies, while the alkane and alkene binding energies are comparable. Binding energies are ~5%–20% higher on water ice substrates compared to pure ices, which is a small increase compared to what has been measured for other volatile molecules such as CO and N_2. Thus in the case of hydrocarbons, H_2O has a less pronounced effect on sublimation front locations (i.e., snowlines) in protoplanetary disks

    TOI-561 b: A Low Density Ultra-Short Period "Rocky" Planet around a Metal-Poor Star

    Full text link
    TOI-561 is a galactic thick disk star hosting an ultra-short period (0.45 day orbit) planet with a radius of 1.37 R_{\oplus}, making it one of the most metal-poor ([Fe/H] = -0.41) and oldest (\sim10 Gyr) sites where an Earth-sized planet has been found. We present new simultaneous radial velocity measurements (RVs) from Gemini-N/MAROON-X and Keck/HIRES, which we combined with literature RVs to derive a mass of Mb_{b}=2.24 ±\pm 0.20 M_{\oplus}. We also used two new Sectors of TESS photometry to improve the radius determination, finding Rb_{b}=1.37±0.04R1.37 \pm 0.04 R_\oplus, and confirming that TOI-561 b is one of the lowest-density super-Earths measured to date (ρb\rho_b= 4.8 ±\pm 0.5 g/cm3^{3}). This density is consistent with an iron-poor rocky composition reflective of the host star's iron and rock-building element abundances; however, it is also consistent with a low-density planet with a volatile envelope. The equilibrium temperature of the planet (\sim2300 K) suggests that this envelope would likely be composed of high mean molecular weight species, such as water vapor, carbon dioxide, or silicate vapor, and is likely not primordial. We also demonstrate that the composition determination is sensitive to the choice of stellar parameters, and that further measurements are needed to determine if TOI-561 b is a bare rocky planet, a rocky planet with an optically thin atmosphere, or a rare example of a non-primordial envelope on a planet with a radius smaller than 1.5 R_{\oplus}.Comment: Accepted to AJ on 11/28/202

    Overfitting Affects the Reliability of Radial Velocity Mass Estimates of the V1298 Tau Planets

    Full text link
    Mass, radius, and age measurements of young (<100 Myr) planets have the power to shape our understanding of planet formation. However, young stars tend to be extremely variable in both photometry and radial velocity, which makes constraining these properties challenging. The V1298 Tau system of four ~0.5 Rjup planets transiting a pre-main sequence star presents an important, if stress-inducing, opportunity to directly observe and measure the properties of infant planets. Su\'arez-Mascare\~no et al. (2021) published radial-velocity-derived masses for two of the V1298 Tau planets using a state-of-the-art Gaussian Process regression framework. The planetary densities computed from these masses were surprisingly high, implying extremely rapid contraction after formation in tension with most existing planet formation theories. In an effort to further constrain the masses of the V1298 Tau planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with published RVs and photometry. Through performing a suite of cross validation tests, we found evidence that the preferred model of SM21 suffers from overfitting, defined as the inability to predict unseen data, rendering the masses unreliable. We detail several potential causes of this overfitting, many of which may be important for other RV analyses of other active stars, and recommend that additional time and resources be allocated to understanding and mitigating activity in active young stars such as V1298 Tau.Comment: 26 pages, 12 figures; published in A
    corecore