36 research outputs found
Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B.
mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A
Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition.
A mouse model for the nucleotide excision repair disorder Cockayne syndrome (CS) was generated by mimicking a truncation in the CSB(ERCC6) gene of a CS-B patient. CSB-deficient mice exhibit all of the CS repair characteristics: ultraviolet (UV) sensitivity, inactivation of transcription-coupled repair, unaffected global genome repair, and inability to resume RNA synthesis after UV exposure. Other CS features thought to involve the functioning of basal transcription/repair factor TFIIH, such as growth failure and neurologic dysfunction, are present in mild form. In contrast to the human syndrome, CSB-deficient mice show increased susceptibility to skin cancer. Our results demonstrate that transcription-coupled repair of UV-induced cyclobutane pyrimidine dimers contributes to the prevention of carcinogenesis in mice. Further, they suggest that the lack of cancer predisposition in CS patients is attributable to a global genome repair process that in humans is more effective than in rodents
Mouse model for the DNA repair/basal transcription disorder Trichothiodystrophy reveals cancer predisposition.
Patients with the nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) are highly predisposed to develop sunlight-induced skin cancer, in remarkable contrast to photosensitive NER-deficient trichothiodystrophy (TTD) patients carrying mutations in the same XPD gene. XPD encodes a helicase subunit of the dually functional DNA repair/basal transcription complex TFIIH. The pleiotropic disease phenotype is hypothesized to be, in part, derived from a repair defect causing UV sensitivity and, in part, from a subtle, viable basal transcription deficiency accounting for the cutaneous, developmental, and the typical brittle hair features of TTD. To understand the relationship between deficient NER and tumor susceptibility, we used a mouse model for TTD that mimics an XPD point mutation of a TTD patient in the mouse germline. Like the fibroblasts from the patient, mouse cells exhibit a partial NER defect, evident from the reduced UV-induced DNA repair synthesis (residual repair capacity approximately 25%), limited recovery of RNA synthesis after UV exposure, and a relatively mild hypersensitivity to cell killing by UV or 7,12-dimethylbenz[a]anthracene. In accordance with the cellular studies, TTD mice exhibit a modestly increased sensitivity to UV-induced inflammation and hyperplasia of the skin. In striking contrast to the human syndrome, TTD mice manifest a dear susceptibility to UV- and 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis, albeit not as pronounced as the totally NER-deficient XPA mice. These findings open up the possibility that TTD is associated with a so far unnoticed cancer predisposition and support the notion that a NER deficiency enhances cancer susceptibility. These findings have important implications for the etiology of the human disorder and for the impact of NER on carcinogenesis