4 research outputs found

    Statistical Origin of Constituent-Quark Scaling in the QGP hadronization

    Full text link
    Nonextensive statistics in a Blast-Wave model (TBW) is implemented to describe the identified hadron production in relativistic p+p and nucleus-nucleus collisions. Incorporating the core and corona components within the TBW formalism allows us to describe simultaneously some of the major observations in hadronic observables at the Relativistic Heavy-Ion Collider (RHIC): the Number of Constituent Quark Scaling (NCQ), the large radial and elliptic flow, the effect of gluon saturation and the suppression of hadron production at high transverse momentum (pT) due to jet quenching. In this formalism, the NCQ scaling at RHIC appears as a consequence of non-equilibrium process. Our study also provides concise reference distributions with a least chi2 fit of the available experimental data for future experiments and models.Comment: 4 pages, 3 figures; added two tables, explained a little bit more on TBW_p

    Improving the dE/dx calibration of the STAR TPC for the high-pT hadron identification

    Full text link
    We derive a method to improve particle identification (PID) at high transverse momentum (pTp_T) using the relativistic rise of the ionization energy loss (rdE/dxrdE/dx) when charged particles traverse the Time Projection Chamber (TPC) at STAR. Electrons triggered and identified by the Barrel Electro-Magnetic Calorimeter (BEMC), pure protons and pions from Λ→p+π−\Lambda\to p+\pi^{-} (Λˉ→pˉ+π+\bar{\Lambda}\to \bar{p}+\pi^{+}), and KS0→π++π−K^{0}_{S}\to\pi^{+}+\pi^{-} decays are used to obtain the dE/dxdE/dx value and its width at given βγ=p/m\beta\gamma=p/m. We found that the deviation of the dE/dxdE/dx from the Bichsel function can be up to 0.4σ0.4\sigma (∼3\sim3%) in p+p collisions at sNN=200\sqrt{s_{NN}}=200 GeV taken and subsequently calibrated in year 2005. The deviation is approximately a function of βγ\beta\gamma independent of particle species and can be described with a function of f(x)=A+BC+x2f(x) = A+\frac{B}{C+x^{2}}. The deviations obtained with this method are used to re-calibrate the data sample from p+p collision for physics analysis of identified hadron spectra and their correlations up to transverse momentum of 15 GeV/cc. The ratio of e−/e+e^{-}/e^{+} (dominantly from γ\gamma-conversion) is also used to correct the residual asymmetry in the negative and positive charged hadrons due to momentun distortion in the STAR TPC.Comment: 18pages, 10 figure
    corecore