156 research outputs found
Weaving the Strands of Life (Iiná Bitł’ool): History of Genetic Research Involving Navajo People
To date, some genetic studies offer medical benefits, but lack a clear pathway to benefit for people from underrepresented backgrounds. Historically Indigenous people, including the Diné (Navajo people), have raised concerns about the lack of benefits, misuse of DNA samples, lack of consultation, and ignoring cultural and traditional ways of knowing. Shortly after the Navajo Nation Human Research Review Board was established in 1996, the Navajo Nation recognized growing concerns about genetic research and established a moratorium on human genetic research studies in 2002. The moratorium effectively has protected their citizens from potential genetic research harms. Despite the placement of the moratorium, some genetic research studies have continued using blood and DNA samples from Navajo people. In order to understand the history of genetic research involving Navajo people, we conducted a literature review of 79 genetic or genetic-related research publications that involved Navajo people from the years 1925 to 2018. In this review, we divided the genetic research studies into the following general classifications: a) bacteria or virus genetics studies, b) blood and human leukocyte antigen, c) complex diseases, d) forensics, e) hereditary diseases, and f) population genetics and migration. We evaluated the methods for each study, described the number of Navajo individuals included in each study, recorded the academic or tribal approval statements, and noted whether the study considered Diné cultural values. Several studies focused on Severe Combined Immunodeficiency Disease, population history, neuropathy, albinism, eye and skin disorders that affect Navajo people. We found genetic research publications involving Navajo people spanning over the course of 93 years. To our knowledge, no known literature reviews have examined the history of genetic research in the Navajo community. In our Discussion, we contextualize Diné ways of knowing related to genetics and health with Western scientific concepts to acknowledge the complex philosophy and belief system that guides Diné people and recognizes Indigenous science. We encourage researchers consider cultural perspectives and traditional knowledge that has the potential to create stronger conclusions and better informed, ethical, and respectful science
Autonomous and self-sustained circadian oscillators displayed in human islet cells
Aims/hypothesis: Following on from the emerging importance of the pancreas circadian clock on islet function and the development of type 2 diabetes in rodent models, we aimed to examine circadian gene expression in human islets. The oscillator properties were assessed in intact islets as well as in beta cells. Methods: We established a system for long-term bioluminescence recording in cultured human islets, employing lentivector gene delivery of the core clock gene Bmal1 (also known as Arntl)-luciferase reporter. Beta cells were stably labelled using a rat insulin2 promoter fluorescent construct. Single-islet/cell oscillation profiles were measured by combined bioluminescence-fluorescence time-lapse microscopy. Results: Human islets synchronised in vitro exhibited self-sustained circadian oscillations of Bmal1-luciferase expression at both the population and single-islet levels, with period lengths of 23.6 and 23.9h, respectively. Endogenous BMAL1 and CRY1 transcript expression was circadian in synchronised islets over 48h, and antiphasic to REV-ERBα (also known as NR1D1), PER1, PER2, PER3 and DBP transcript circadian profiles. HNF1A and PDX1 exhibited weak circadian oscillations, in phase with the REV-ERBα transcript. Dispersed islet cells were strongly oscillating as well, at population and single-cell levels. Importantly, beta and non-beta cells revealed oscillatory profiles that were well synchronised with each other. Conclusions/interpretation: We provide for the first time compelling evidence for high-amplitude cell-autonomous circadian oscillators displayed in human pancreatic islets and in dispersed human islet cells. Moreover, these clocks are synchronised between beta and non-beta cells in primary human islet cell culture
Autonomous and self-sustained circadian oscillators displayed in human islet cells
Aims/hypothesis: Following on from the emerging importance of the pancreas circadian clock on islet function and the development of type 2 diabetes in rodent models, we aimed to examine circadian gene expression in human islets. The oscillator properties were assessed in intact islets as well as in beta cells. Methods: We established a system for long-term bioluminescence recording in cultured human islets, employing lentivector gene delivery of the core clock gene Bmal1 (also known as Arntl)-luciferase reporter. Beta cells were stably labelled using a rat insulin2 promoter fluorescent construct. Single-islet/cell oscillation profiles were measured by combined bioluminescence-fluorescence time-lapse microscopy. Results: Human islets synchronised in vitro exhibited self-sustained circadian oscillations of Bmal1-luciferase expression at both the population and single-islet levels, with period lengths of 23.6 and 23.9h, respectively. Endogenous BMAL1 and CRY1 transcript expression was circadian in synchronised islets over 48h, and antiphasic to REV-ERBα (also known as NR1D1), PER1, PER2, PER3 and DBP transcript circadian profiles. HNF1A and PDX1 exhibited weak circadian oscillations, in phase with the REV-ERBα transcript. Dispersed islet cells were strongly oscillating as well, at population and single-cell levels. Importantly, beta and non-beta cells revealed oscillatory profiles that were well synchronised with each other. Conclusions/interpretation: We provide for the first time compelling evidence for high-amplitude cell-autonomous circadian oscillators displayed in human pancreatic islets and in dispersed human islet cells. Moreover, these clocks are synchronised between beta and non-beta cells in primary human islet cell culture
The P2X1 receptor and platelet function
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of αIIbβ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques
Retinoblastoma Loss Modulates DNA Damage Response Favoring Tumor Progression
Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRasV12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies
Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation.
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies
The Timing of the Cognitive Cycle
We propose that human cognition consists of cascading cycles of recurring brain
events. Each cognitive cycle senses the current situation, interprets it with
reference to ongoing goals, and then selects an internal or external action in
response. While most aspects of the cognitive cycle are unconscious, each cycle
also yields a momentary “ignition” of conscious broadcasting.
Neuroscientists have independently proposed ideas similar to the cognitive
cycle, the fundamental hypothesis of the LIDA model of cognition. High-level
cognition, such as deliberation, planning, etc., is typically enabled by
multiple cognitive cycles. In this paper we describe a timing model LIDA's
cognitive cycle. Based on empirical and simulation data we propose that an
initial phase of perception (stimulus recognition) occurs 80–100 ms from
stimulus onset under optimal conditions. It is followed by a conscious episode
(broadcast) 200–280 ms after stimulus onset, and an action selection phase
60–110 ms from the start of the conscious phase. One cognitive cycle would
therefore take 260–390 ms. The LIDA timing model is consistent with brain
evidence indicating a fundamental role for a theta-gamma wave, spreading forward
from sensory cortices to rostral corticothalamic regions. This posteriofrontal
theta-gamma wave may be experienced as a conscious perceptual event starting at
200–280 ms post stimulus. The action selection component of the cycle is
proposed to involve frontal, striatal and cerebellar regions. Thus the cycle is
inherently recurrent, as the anatomy of the thalamocortical system suggests. The
LIDA model fits a large body of cognitive and neuroscientific evidence. Finally,
we describe two LIDA-based software agents: the LIDA Reaction Time agent that
simulates human performance in a simple reaction time task, and the LIDA Allport
agent which models phenomenal simultaneity within timeframes comparable to human
subjects. While there are many models of reaction time performance, these
results fall naturally out of a biologically and computationally plausible
cognitive architecture
Oceanic Residual Depth Measurements, the Plate Cooling Model and Global Dynamic Topography
Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here, we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age, and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1,936 seismic surveys located on oceanic crust and generate 2,297 spot measurements of residual topography, including 1,161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ∼1,000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e. wavelengths down to 1,300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.This research is supported by a BP-Cambridge collaboration
- …