593 research outputs found
On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering
We study the dipole picture of high-energy virtual-photon-proton scattering.
It is shown that different choices for the energy variable in the dipole cross
section used in the literature are not related to each other by simple
arguments equating the typical dipole size and the inverse photon virtuality,
contrary to what is often stated. We argue that the good quality of fits to
structure functions that use Bjorken-x as the energy variable - which is
strictly speaking not justified in the dipole picture - can instead be
understood as a consequence of the sign of scaling violations that occur for
increasing Q^2 at fixed small x. We show that the dipole formula for massless
quarks has the structure of a convolution. From this we obtain derivative
relations between the structure function F_2 at large and small Q^2 and the
dipole-proton cross section at small and large dipole size r, respectively.Comment: 27 page
A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument
We here report on a well-preserved juvenile lizard specimen in Albian amber (ca. 110 mya) from the Hkamti site (Myanmar). This new taxon is represented by an articulated skull and the anterior portion of the trunk, including the pectoral girdle and forelimbs. The scleral ossicles and eyelid are also visible, and the specimen exhibits pristine detail of the integument (of both head and body). In a combined molecular and morphological analysis, it was consistently recovered as a scincoid lizard (Scinciformata), as sister to Tepexisaurus + Xantusiidae. However, the phylogenetic position of the new taxon should be interpreted with caution as the holotype is an immature individual. We explored the possibility of miscoding ontogenetically variable characters by running alternative analyses in which these characters were scored as missing data for our taxon. With the exception of one tree, in which it was sister to Amphisbaenia, the specimen was recovered as a Pan-xantusiid. Moreover, we cannot rule out the possibility that it represents a separate lineage of uncertain phylogenetic position, as it is the case for many Jurassic and Cretaceous taxa. Nonetheless, this fossil offers a rare opportunity to glimpse the external appearance of one group of lizards during the Early Cretaceous
Looking back at superfluid helium
A few years after the discovery of Bose Einstein condensation in several
gases, it is interesting to look back at some properties of superfluid helium.
After a short historical review, I comment shortly on boiling and evaporation,
then on the role of rotons and vortices in the existence of a critical velocity
in superfluid helium. I finally discuss the existence of a condensate in a
liquid with strong interactions, and the pressure variation of its superfluid
transition temperature.Comment: Conference "Bose Einstein Condensation", Institut henri Poincare,
Paris, 29 march 200
Diffractive Phenomena and Shadowing in Deep-Inelastic Scattering
Shadowing effects in deep-inelastic lepton-nucleus scattering probe the mass
spectrum of diffractive leptoproduction from individual nucleons. We explore
this relationship using current experimental information on both processes. In
recent data from the NMC and E665 collaboration, taken at small x << 0.1 and
Q^2 < 1 GeV^2, shadowing is dominated by the diffractive excitation and
coherent interaction of low mass vector mesons. If shadowing is explored at
small x > 1 GeV^2 as discussed at HERA, the situation is
different. Here dominant contributions come from the coherent interaction of
diffractively produced heavy mass states. Furthermore we observe that the
energy dependence of shadowing is directly related to the mass dependence of
the diffractive production cross section for free nucleon targets.Comment: 12 pages Latex, 8 figure
A Class of Non-Parametric Statistical Manifolds modelled on Sobolev Space
We construct a family of non-parametric (infinite-dimensional) manifolds of finite measures on Rd. The manifolds are modelled on a variety of weighted Sobolev spaces, including Hilbert-Sobolev spaces and mixed-norm spaces. Each supports the Fisher-Rao metric as a weak Riemannian metric. Densities are expressed in terms of a deformed exponential function having linear growth. Unusually for the Sobolev context, and as a consequence of its linear growth, this "lifts" to a nonlinear superposition (Nemytskii) operator that acts continuously on a particular class of mixed-norm model spaces, and on the fixed norm space W²'¹ i.e. it maps each of these spaces continuously into itself. It also maps continuously between other fixed-norm spaces with a loss of Lebesgue exponent that increases with the number of derivatives. Some of the results make essential use of a log-Sobolev embedding theorem. Each manifold contains a smoothly embedded submanifold of probability measures. Applications to the stochastic partial differential equations of nonlinear filtering (and hence to the Fokker-Planck equation) are outlined
Ioffe Times in DIS from a Dipole Model Fit
We present a study of Ioffe times in deep inelastic electron-proton
scattering. We deduce 'experimental' Ioffe-time distributions from the small-x
HERA data as described by a particular colour-dipole-model fit. We show
distributions for three representative gamma*-proton c.m. energies W and
various values of the photon virtuality Q^2. These distributions are rather
broad for transversely and very narrow for longitudinally polarised virtual
photons. The Ioffe times for W=150 GeV, for example, range from around 1000 fm
for Q^2=1 GeV^2 to around 10 fm for Q^2=100 GeV^2. Based on our results we
discuss consequences for the limitations of applicability of the dipole
picture.Comment: 20 page
Recommended from our members
Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions.
The PHENIX collaboration presents first measurements of low-momentum (0.41 GeV/c) direct-photon yield dN_{γ}^{dir}/dη is a smooth function of dN_{ch}/dη and can be well described as proportional to (dN_{ch}/dη)^{α} with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high p_{T} (>5 GeV/c), but when results from different collision energies are compared, an additional sqrt[s_{NN}]-dependent multiplicative factor is needed to describe the integrated-direct-photon yield
Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases
Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.
We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.
For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.
The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download
Genes Associated with 2-Methylisoborneol Biosynthesis in Cyanobacteria: Isolation, Characterization, and Expression in Response to Light
The volatile microbial metabolite 2-methylisoborneol (2-MIB) is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater
- …