268 research outputs found

    On a Modified DeGroot-Friedkin Model of Opinion Dynamics

    Full text link
    This paper studies the opinion dynamics that result when individuals consecutively discuss a sequence of issues. Specifically, we study how individuals' self-confidence levels evolve via a reflected appraisal mechanism. Motivated by the DeGroot-Friedkin model, we propose a Modified DeGroot-Friedkin model which allows individuals to update their self-confidence levels by only interacting with their neighbors and in particular, the modified model allows the update of self-confidence levels to take place in finite time without waiting for the opinion process to reach a consensus on any particular issue. We study properties of this Modified DeGroot-Friedkin model and compare the associated equilibria and stability with those of the original DeGroot-Friedkin model. Specifically, for the case when the interaction matrix is doubly stochastic, we show that for the modified model, the vector of individuals' self-confidence levels asymptotically converges to a unique nontrivial equilibrium which for each individual is equal to 1/n, where n is the number of individuals. This implies that eventually, individuals reach a democratic state

    Optimal Estimation with Limited Measurements and Noisy Communication

    Full text link
    This paper considers a sequential estimation and sensor scheduling problem with one sensor and one estimator. The sensor makes sequential observations about the state of an underlying memoryless stochastic process, and makes a decision as to whether or not to send this measurement to the estimator. The sensor and the estimator have the common objective of minimizing expected distortion in the estimation of the state of the process, over a finite time horizon, with the constraint that the sensor can transmit its observation only a limited number of times. As opposed to the prior work where communication between the sensor and the estimator was assumed to be perfect (noiseless), in this work an additive noise channel with fixed power constraint is considered; hence, the sensor has to encode its message before transmission. For some specific source and channel noise densities, we obtain the optimal encoding and estimation policies in conjunction with the optimal transmission schedule. The impact of the presence of a noisy channel is analyzed numerically based on dynamic programming. This analysis yields some rather surprising results such as a phase-transition phenomenon in the number of used transmission opportunities, which was not encountered in the noiseless communication setting.Comment: X. Gao, E. Akyol, and T. Basar. Optimal estimation with limited measurements and noisy communication. In 54th IEEE Conference on Decision and Control (CDC15), 2015, to appea
    • …
    corecore