1,415 research outputs found

    Career mobility in a global era: advances in managing expatriation and repatriation

    Get PDF
    The surge of interest in expatriation and repatriation within the broader discourse on labor mobility of professionals and high-skilled labor, human capital development and the theory and practice of people management, serves as the backdrop to this paper. We propose that expatriation and repatriation be framed in the context of global careers and embedded in the wider social-economic environment of globalization through the lens of a career ecosystem theory. We chart the evolution of scholarly publications on career mobility over the past four decades and highlight current trends, in particular the emergence of self-initiated expatriation as a pivotal change in the direction of expatriation studies and derived practice. We assess the rigor of empirical findings, weigh theoretical underpinnings, offer a research agenda for future research and outline managerial implications

    Thermal collapse of a granular gas under gravity

    Full text link
    Free cooling of a gas of inelastically colliding hard spheres represents a central paradigm of kinetic theory of granular gases. At zero gravity the temperature of a freely cooling homogeneous granular gas follows a power law in time. How does gravity, which brings inhomogeneity, affect the cooling? We combine molecular dynamics simulations, a numerical solution of hydrodynamic equations and an analytic theory to show that a granular gas cooling under gravity undergoes thermal collapse: it cools down to zero temperature and condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR

    Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas

    Full text link
    We employ Navier-Stokes granular hydrodynamics to investigate the long-time behavior of clustering instability in a freely cooling dilute granular gas in two dimensions. We find that, in circular containers, the homogeneous cooling state (HCS) of the gas loses its stability via a sub-critical pitchfork bifurcation. There are no time-independent solutions for the gas density in the supercritical region, and we present analytical and numerical evidence that the gas develops thermal collapse unarrested by heat diffusion. To get more insight, we switch to a simpler geometry of a narrow-sector-shaped container. Here the HCS loses its stability via a transcritical bifurcation. For some initial conditions a time-independent inhomogeneous density profile sets in, qualitatively similar to that previously found in a narrow-channel geometry. For other initial conditions, however, the dilute gas develops thermal collapse unarrested by heat diffusion. We determine the dynamic scalings of the flow close to collapse analytically and verify them in hydrodynamic simulations. The results of this work imply that, in dimension higher than one, Navier-Stokes hydrodynamics of a dilute granular gas is prone to finite-time density blowups. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review

    A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases

    Full text link
    We use hydrodynamics to investigate non-stationary channel flows of freely cooling dilute granular gases. We focus on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation is exactly soluble, and the solution develops a finite-time density blowup. The heat diffusion, however, becomes important near the attempted singularity. It arrests the density blowup and brings about novel inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. Both the density profile of an ICS, and the characteristic relaxation time towards it are determined by a single dimensionless parameter that describes the relative role of the inelastic energy loss and heat diffusion. At large values of this parameter, the intermediate cooling dynamics proceeds as a competition between low-density regions of the gas. This competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio

    Swearing at Work: The Mixed Outcomes of Profanity

    Get PDF
    We explore the use and misuse of swearing in the workplace. Using a qualitative methodology, we interviewed 52 lawyers, medical doctors and business executives in the UK, France, and the U.S. In contrast to much of the incivility and social norms literatures, we find that male and female business executives, lawyers and doctors of all ages admit to swearing. Further, swearing can lead to positive outcomes at the individual, interpersonal and group levels, including stress-relief, communication-enrichment, and socialization-enhancement. An implication for future scholarship is that ‘thinking out of the box’ when exploring emotion related issues can lead to new insights. Practical implications include reconsidering and tolerating incivility under certain conditions. We identified a case in which a negative phenomenon reveals counter-intuitive yet insightful results

    The puzzle of 90 degree reorientation in the vortex lattice of borocarbide superconductors

    Full text link
    We explain 90 degree reorientation in the vortex lattice of borocarbide superconductors on the basis of a phenomenological extension of the nonlocal London model that takes full account of the symmetry of the system. We propose microscopic mechanisms that could generate the correction terms and point out the important role of the superconducting gap anisotropy.Comment: 4 pages, 2 eps figure

    Hydrodynamics of thermal granular convection

    Full text link
    A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular convection, recently predicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered. The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurcation, the inelasticity of the collisions being the control parameter. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain collisions.Comment: 4 pages, 4 EPS figures, some details adde
    • …
    corecore