1,415 research outputs found
Career mobility in a global era: advances in managing expatriation and repatriation
The surge of interest in expatriation and repatriation within the broader discourse on labor mobility of professionals and high-skilled labor, human capital development and the theory and practice of people management, serves as the backdrop to this paper. We propose that expatriation and repatriation be framed in the context of global careers and embedded in the wider social-economic environment of globalization through the lens of a career ecosystem theory. We chart the evolution of scholarly publications on career mobility over the past four decades and highlight current trends, in particular the emergence of self-initiated expatriation as a pivotal change in the direction of expatriation studies and derived practice. We assess the rigor of empirical findings, weigh theoretical underpinnings, offer a research agenda for future research and outline managerial implications
Thermal collapse of a granular gas under gravity
Free cooling of a gas of inelastically colliding hard spheres represents a
central paradigm of kinetic theory of granular gases. At zero gravity the
temperature of a freely cooling homogeneous granular gas follows a power law in
time. How does gravity, which brings inhomogeneity, affect the cooling? We
combine molecular dynamics simulations, a numerical solution of hydrodynamic
equations and an analytic theory to show that a granular gas cooling under
gravity undergoes thermal collapse: it cools down to zero temperature and
condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas
We employ Navier-Stokes granular hydrodynamics to investigate the long-time
behavior of clustering instability in a freely cooling dilute granular gas in
two dimensions. We find that, in circular containers, the homogeneous cooling
state (HCS) of the gas loses its stability via a sub-critical pitchfork
bifurcation. There are no time-independent solutions for the gas density in the
supercritical region, and we present analytical and numerical evidence that the
gas develops thermal collapse unarrested by heat diffusion. To get more
insight, we switch to a simpler geometry of a narrow-sector-shaped container.
Here the HCS loses its stability via a transcritical bifurcation. For some
initial conditions a time-independent inhomogeneous density profile sets in,
qualitatively similar to that previously found in a narrow-channel geometry.
For other initial conditions, however, the dilute gas develops thermal collapse
unarrested by heat diffusion. We determine the dynamic scalings of the flow
close to collapse analytically and verify them in hydrodynamic simulations. The
results of this work imply that, in dimension higher than one, Navier-Stokes
hydrodynamics of a dilute granular gas is prone to finite-time density blowups.
This provides a natural explanation to the formation of densely packed clusters
of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure
Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics
It has been recently shown (Fouxon et al. 2007) that, in the framework of
ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a
granular gas can produce an infinite gas density in a finite time. Exact
solutions that exhibit this property have been derived. Close to the
singularity, the granular gas pressure is finite and almost constant. This work
reports molecular dynamics (MD) simulations of a freely cooling gas of nearly
elastically colliding hard disks, aimed at identifying the "attempted" density
blowup regime. The initial conditions of the simulated flow mimic those of one
particular solution of the IGHD equations that exhibits the density blowup. We
measure the hydrodynamic fields in the MD simulations and compare them with
predictions from the ideal theory. We find a remarkable quantitative agreement
between the two over an extended time interval, proving the existence of the
attempted blowup regime. As the attempted singularity is approached, the
hydrodynamic fields, as observed in the MD simulations, deviate from the
predictions of the ideal solution. To investigate the mechanism of breakdown of
the ideal theory near the singularity, we extend the hydrodynamic theory by
accounting separately for the gradient-dependent transport and for finite
density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review
A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases
We use hydrodynamics to investigate non-stationary channel flows of freely
cooling dilute granular gases. We focus on the regime where the sound travel
time through the channel is much shorter than the characteristic cooling time
of the gas. As a result, the gas pressure rapidly becomes almost homogeneous,
while the typical Mach number of the flow drops well below unity. Eliminating
the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear
and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates.
This equation describes a broad class of channel flows and, in particular, can
follow the development of the clustering instability from a weakly perturbed
homogeneous cooling state to strongly nonlinear states. If the heat diffusion
is neglected, the reduced equation is exactly soluble, and the solution
develops a finite-time density blowup. The heat diffusion, however, becomes
important near the attempted singularity. It arrests the density blowup and
brings about novel inhomogeneous cooling states (ICSs) of the gas, where the
pressure continues to decay with time, while the density profile becomes
time-independent. Both the density profile of an ICS, and the characteristic
relaxation time towards it are determined by a single dimensionless parameter
that describes the relative role of the inelastic energy loss and heat
diffusion. At large values of this parameter, the intermediate cooling dynamics
proceeds as a competition between low-density regions of the gas. This
competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio
Swearing at Work: The Mixed Outcomes of Profanity
We explore the use and misuse of swearing in the workplace. Using a qualitative methodology, we interviewed 52 lawyers, medical doctors and business executives in the UK, France, and the U.S. In contrast to much of the incivility and social norms literatures, we find that male and female business executives, lawyers and doctors of all ages admit to swearing. Further, swearing can lead to positive outcomes at the individual, interpersonal and group levels, including stress-relief, communication-enrichment, and socialization-enhancement. An implication for future scholarship is that ‘thinking out of the box’ when exploring emotion related issues can lead to new insights. Practical implications include reconsidering and tolerating incivility under certain conditions. We identified a case in which a negative phenomenon reveals counter-intuitive yet insightful results
The puzzle of 90 degree reorientation in the vortex lattice of borocarbide superconductors
We explain 90 degree reorientation in the vortex lattice of borocarbide
superconductors on the basis of a phenomenological extension of the nonlocal
London model that takes full account of the symmetry of the system. We propose
microscopic mechanisms that could generate the correction terms and point out
the important role of the superconducting gap anisotropy.Comment: 4 pages, 2 eps figure
Hydrodynamics of thermal granular convection
A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular
convection, recently predicted in molecular dynamic simulations and observed in
experiment. The limit of a dilute flow is considered. The problem is fully
described by three scaled parameters. The convection occurs via a supercritical
bifurcation, the inelasticity of the collisions being the control parameter.
The theory is expected to be valid for small Knudsen numbers and nearly elastic
grain collisions.Comment: 4 pages, 4 EPS figures, some details adde
- …