254 research outputs found

    The observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide

    Full text link
    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth and spin state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+:Y2SiO5 crystal allows the 3H4 - 1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2 GHz inhomogeneous linewidth, the optical coherence time of 70 +- 5 us, and the spin state lifetime of 9.8 +- 0.3 s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated and high performance rare-earth-ion quantum systems based on a waveguide platform.Comment: 5 pages, 5 figure

    Technique for frequency selective, sub-diffraction limited imaging of rare-earth ions in bulk crystals

    Get PDF
    We propose and demonstrate the principle of a sub-diffraction-limited optical imaging technique for rare-earth ion crystals that preserves the ions’ homogeneous line width. Our method uses a combination of applied electric field gradients and optical pumping to create a resonant nanoscopic volume within an otherwise non-resonant macroscopic crystal. We present the concept of the Stark activation technique and perform a demonstration in Pr³⁺: Y₂SiO₅ in which we create a 10 μm-thick absorption feature in a 1 mm thick crystal. By modeling the system we show that it is possible to increase the resolution of the technique to the 5 nm range for single Pr³⁺ ions. We also discuss the physical properties that will fundamentally limit the resolution of Stark activation. Because the proposed technique simultaneously achieves high spatial and high spectral resolution it is an enabling protocol to realize technology based on single rare-earth ions and harness short-range interactions in ensembles.This work was supported by the Australian Research Council Center of Excellence for Quantum Computation and Communication Technology (CE110001027). M.J.S. was supported by an Australian Research Council Future Fellowship (FT110100919)

    Control and single-shot readout of an ion embedded in a nanophotonic cavity

    Get PDF
    Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication. Building quantum networks requires scalable quantum light–matter interfaces based on atoms, ions or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide , have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light–matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f–4f optical and spin transitions suited to quantum storage and transduction, but only recently have single rare-earth ions been isolated and coupled to nanocavities. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single ¹⁷¹Yb³⁺ ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet

    Optical Line Width Broadening Mechanisms at the 10 kHz Level in Eu^(3+):Y_2O_3 Nanoparticles

    Get PDF
    We identify the physical mechanisms responsible for the optical homogeneous broadening in Eu^(3+):Y_2O_3 nanoparticles to determine whether rare-earth crystals can be miniaturized to volumes less than λ^3 while preserving their appeal for quantum technology hardware. By studying how the homogeneous line width depends on temperature, applied magnetic field, and measurement time scale, the dominant broadening interactions for various temperature ranges above 3 K were characterized. Below 3 K the homogeneous line width is dominated by an interaction not observed in bulk crystal studies. These measurements demonstrate that broadening due to size-dependent phonon interactions is not a significant contributor to the homogeneous line width, which contrasts previous studies in rare-earth ion nanocrystals. Importantly, the results provide strong evidence that for the 400 nm diameter nanoparticles under study the minimum line width achieved (45 ± 1 kHz at 1.3 K) is not fundamentally limited. In addition, we highlight that the expected broadening caused by electric field fluctuations arising from surface charges is comparable to the observed broadening. Under the assumption that such Stark broadening is a significant contribution to the homogeneous line width, several strategies for reducing this line width to below 10 kHz are discussed. Furthermore, it is demonstrated that the Eu^(3+) hyperfine state lifetime is sufficiently long to preserve spectral features for time scales up to 1 s. These results allow integrated rare-earth ion quantum optics to be pursued at a submicron scale and, hence, open up directions for greater scaling of rare-earth quantum technology

    Characterization of the Superhyperfine Interaction in ^(171)Yb:YVO_4

    Get PDF
    We computationally characterize the superhyperfine energy structure of ^(171)Yb:YVO_4 and compare predicted holeburning spectra and coherence times with experimental data. Our simulation can help optimize coherence times for ensemble-based quantum memories and single-ion qubits

    Multifunctional on-chip storage at telecommunication wavelength for quantum networks

    Get PDF
    Quantum networks will enable a variety of applications, from secure communication and precision measurements to distributed quantum computing. Storing photonic qubits and controlling their frequency, bandwidth and retrieval time are important functionalities in future optical quantum networks. Here we demonstrate these functions using an ensemble of erbium ions in yttrium orthosilicate coupled to a silicon photonic resonator and controlled via on-chip electrodes. Light in the telecommunication C-band is stored, manipulated and retrieved using a dynamic atomic frequency comb protocol controlled by linear DC Stark shifts of the ion ensemble's transition frequencies. We demonstrate memory time control in a digital fashion in increments of 50 ns, frequency shifting by more than a pulse-width (±39 MHz), and a bandwidth increase by a factor of three, from 6 MHz to 18 MHz. Using on-chip electrodes, electric fields as high as 3 kV/cm were achieved with a low applied bias of 5 V, making this an appealing platform for rare earth ions, which experience Stark shifts of the order of 10 kHz/(V/cm)

    Multifunctional on-chip storage at telecommunication wavelength for quantum networks

    Get PDF
    Quantum networks will enable a variety of applications, from secure communication and precision measurements to distributed quantum computing. Storing photonic qubits and controlling their frequency, bandwidth and retrieval time are important functionalities in future optical quantum networks. Here we demonstrate these functions using an ensemble of erbium ions in yttrium orthosilicate coupled to a silicon photonic resonator and controlled via on-chip electrodes. Light in the telecommunication C-band is stored, manipulated and retrieved using a dynamic atomic frequency comb protocol controlled by linear DC Stark shifts of the ion ensemble's transition frequencies. We demonstrate memory time control in a digital fashion in increments of 50 ns, frequency shifting by more than a pulse-width (±39\pm39 MHz), and a bandwidth increase by a factor of three, from 6 MHz to 18 MHz. Using on-chip electrodes, electric fields as high as 3 kV/cm were achieved with a low applied bias of 5 V, making this an appealing platform for rare earth ions, which experience Stark shifts of the order of 10 kHz/(V/cm).Comment: 26 pages, 5 figure

    Optically addressing single rare-earth ions in a nanophotonic cavity

    Get PDF
    We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks

    PACAP-38 Signaling in \u3ci\u3eTetrahymena thermophila\u3c/i\u3e Involves NO and cGMP

    Get PDF
    Chemorepellents are signaling molecules, which have been shown to be important for mammalian neuronal development, and are presumed to have a role in protozoan defense. Tetrahymena thermophila represent a good model system in which to study repellents because of their ease of use in biochemical, behavioral, electrophysiological, and genetic analyses. In this study, we have used Tetrahymena as a model in which to study the chemorepellent, PACAP. Using behavioral and biochemical (EIA) assays, we have found that the NO/cGMP pathway plays an important role in PACAP signaling. An increase in intracellular calcium is also critical for PACAP avoidance, which appears to be mediated through a pertussis toxin-sensitive G-protein
    corecore