4,485 research outputs found
The dimension of loop-erased random walk in 3D
We measure the fractal dimension of loop-erased random walk (LERW) in 3
dimensions, and estimate that it is 1.62400 +- 0.00005. LERW is closely related
to the uniform spanning tree and the abelian sandpile model. We simulated LERW
on both the cubic and face-centered cubic lattices; the corrections to scaling
are slightly smaller for the face-centered cubic lattice.Comment: 4 pages, 4 figures. v2 has more data, minor additional change
Random walk on the range of random walk
We study the random walk X on the range of a simple random walk on ℤ d in dimensions d≥4. When d≥5 we establish quenched and annealed scaling limits for the process X, which show that the intersections of the original simple random walk path are essentially unimportant. For d=4 our results are less precise, but we are able to show that any scaling limit for X will require logarithmic corrections to the polynomial scaling factors seen in higher dimensions. Furthermore, we demonstrate that when d=4 similar logarithmic corrections are necessary in describing the asymptotic behavior of the return probability of X to the origin
Chemical and Photometric Evolution of Extended Ultraviolet Disks: Optical Spectroscopy of M83 (NGC5236) and NGC4625
We present the results from the analysis of optical spectra of 31
Halpha-selected regions in the extended UV (XUV) disks of M83 (NGC5236) and
NGC4625 recently discovered by GALEX. The spectra were obtained using IMACS at
Las Campanas Observatory 6.5m Magellan I telescope and COSMIC at the Palomar
200-inch telescope, respectively for M83 and NGC4625. The line ratios measured
indicate nebular oxygen abundances (derived from the R23 parameter) of the
order of Zsun/5-Zsun/10. For most emission-line regions analyzed the line
fluxes and ratios measured are best reproduced by models of photoionization by
single stars with masses in the range 20-40 Msun and oxygen abundances
comparable to those derived from the R23 parameter. We find indications for a
relatively high N/O abundance ratio in the XUV disk of M83. Although the
metallicities derived imply that these are not the first stars formed in the
XUV disks, such a level of enrichment could be reached in young spiral disks
only 1 Gyr after these first stars would have formed. The amount of gas in the
XUV disks allow maintaining the current level of star formation for at least a
few Gyr.Comment: 52 pages, 8 tables, 7 figures, accepted for publication in Ap
ISO observations of far-infrared rotational emission lines of water vapor toward the supergiant star VY Canis Majoris
We report the detection of numerous far-infrared emission lines of water
vapor toward the supergiant star VY Canis Majoris. A 29.5 - 45 micron grating
scan of VY CMa, obtained using the Short Wavelength Spectrometer (SWS) of the
Infrared Space Observatory (ISO) at a spectral resolving power of approximately
2000, reveals at least 41 spectral features due to water vapor that together
radiate a total luminosity ~ 25 solar luminosities. In addition to pure
rotational transitions within the ground vibrational state, these features
include rotational transitions within the (010) excited vibrational state. The
spectrum also shows the doublet Pi 1/2 (J=5/2) <-- doublet Pi 3/2 (J=3/2) OH
feature near 34.6 micron in absorption. Additional SWS observations of VY CMa
were carried out in the instrument's Fabry-Perot mode for three water
transitions: the 7(25)-6(16) line at 29.8367 micron, the 4(41)-3(12) line
31.7721 micron, and the 4(32)-3(03) line at 40.6909 micron. The higher spectral
resolving power of approximately 30,000 thereby obtained permits the line
profiles to be resolved spectrally for the first time and reveals the "P Cygni"
profiles that are characteristic of emission from an outflowing envelope.Comment: 11 pages (inc. 2 figures), LaTeX, uses aaspp4.sty, accepted for
publication in ApJ Letter
The Star Formation and Extinction Co-Evolution of UV-Selected Galaxies over 0.05<z<1.2
We use a new stacking technique to obtain mean mid IR and far IR to far UV
flux ratios over the rest near-UV/near-IR color-magnitude diagram. We employ
COMBO-17 redshifts and COMBO-17 optical, GALEX far and near UV, Spitzer IRAC
and MIPS Mid IR photometry. This technique permits us to probe infrared excess
(IRX), the ratio of far IR to far UV luminosity, and specific star formation
rate (SSFR) and their co-evolution over two orders of magnitude of stellar mass
and redshift 0.1<z<1.2. We find that the SSFR and the characteristic mass (M_0)
above which the SSFR drops increase with redshift (downsizing). At any given
epoch, IRX is an increasing function of mass up to M_0. Above this mass IRX
falls, suggesting gas exhaustion. In a given mass bin below M_0 IRX increases
with time in a fashion consistent with enrichment. We interpret these trends
using a simple model with a Schmidt-Kennicutt law and extinction that tracks
gas density and enrichment. We find that the average IRX and SSFR follows a
galaxy age parameter which is determined mainly by the galaxy mass and time
since formation. We conclude that blue sequence galaxies have properties which
show simple, systematic trends with mass and time such as the steady build-up
of heavy elements in the interstellar media of evolving galaxies and the
exhaustion of gas in galaxies that are evolving off the blue sequence. The IRX
represents a tool for selecting galaxies at various stages of evolution.Comment: Accepted for publication in GALEX Special Ap.J.Suppl., December, 200
Neural Decision Boundaries for Maximal Information Transmission
We consider here how to separate multidimensional signals into two
categories, such that the binary decision transmits the maximum possible
information transmitted about those signals. Our motivation comes from the
nervous system, where neurons process multidimensional signals into a binary
sequence of responses (spikes). In a small noise limit, we derive a general
equation for the decision boundary that locally relates its curvature to the
probability distribution of inputs. We show that for Gaussian inputs the
optimal boundaries are planar, but for non-Gaussian inputs the curvature is
nonzero. As an example, we consider exponentially distributed inputs, which are
known to approximate a variety of signals from natural environment.Comment: 5 pages, 3 figure
Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation
The meaningful comparison of models of galaxy evolution to observations is
critically dependent on the accurate treatment of dust attenuation. To
investigate dust absorption and emission in galaxies we have assembled a sample
of ~1000 galaxies with ultraviolet (UV) through infrared (IR) photometry from
GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to
UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use
the 4000A break as a robust and useful, although coarse, indicator of star
formation history (SFH). We examine the relationship between IRX and the UV
spectral slope (a common attenuation indicator at high-redshift) and find
little dependence of the scatter on 4000A break strength. We construct average
UV through far-IR spectral energy distributions (SEDs) for different ranges of
IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the
entire SED with these parameters. When binned simultaneously by IRX, 4000A
break strength, and M_* these SEDs allow us to determine a low resolution
average attenuation curve for different ranges of M_*. The attenuation curves
thus derived are consistent with a lambda^{-0.7} attenuation law, and we find
no significant variations with M_*. Finally, we show the relationship between
IRX and the global stellar mass surface density and gas-phase-metallicity.
Among star forming galaxies we find a strong correlation between IRX and
stellar mass surface density, even at constant metallicity, a result that is
closely linked to the well-known correlation between IRX and star-formation
rate.Comment: 12 pages, 8 figures, 2 tables, appearing in the Dec 2007 GALEX
special issue of ApJ Supp (29 papers
Extinction Corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors
Using a sample of galaxies from the Sloan Digital Sky Survey spectroscopic
catalog with measured star-formation rates (SFRs) and ultraviolet (UV)
photometry from the GALEX Medium Imaging Survey, we derived empirical linear
correlations between the SFR to UV luminosity ratio and the UV-optical colors
of blue sequence galaxies. The relations provide a simple prescription to
correct UV data for dust attenuation that best reconciles the SFRs derived from
UV and emission line data. The method breaks down for the red sequence
population as well as for very blue galaxies such as the local ``supercompact''
UV luminous galaxies and the majority of high redshift Lyman Break Galaxies
which form a low attenuation sequence of their own.Comment: 20 pages, 11 figures, accepted for publication in the ApJS GALEX
special issu
Training Models in Counseling Psychology: Scientist-Practitioner Versus Practitioner-Scholar
Considerable discussion has occurred through the years regarding models of training. With the recent accreditation of counseling psychology programs espousing the practitioner-scholar model, the importance of reexamining the merits of this as well as the traditional scientist-practitioner is now very important for the future of the field. This article consists of two positions: One pro practitioner-scholar and the other pro scientist-practitioner and con practitioner-scholar. The first position (first part of the article) by Biever, Patterson, and Welch argues for inclusion of the practitioner-scholar model as an alternative for training in counseling psychology. The second position (in the second part of the article) by Stoltenberg, Pace, and Kashubeck reviews concerns with two competing models. These authors conclude that the scientist-practitioner model is a better fit for training in counseling psychology. Recommendations for training within models are presented.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Temporal Integration of Movement: The Time-Course of Motion Streaks Revealed by Masking
Temporal integration in the visual system causes fast-moving objects to leave oriented ‘motion streaks’ in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over 100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving (‘streaky’) and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from to ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks
- …