28,359 research outputs found
Design of ternary signals for MIMO identification in the presence of noise and nonlinear distortion
A new approach to designing sets of ternary periodic signals with different periods for multi-input multi-output system identification is described. The signals are pseudo-random signals with uniform nonzero harmonics, generated from Galois field GF(q), where q is a prime or a power of a prime. The signals are designed to be uncorrelated, so that effects of different inputs can be easily decoupled. However, correlated harmonics can be included if necessary, for applications in the identification of ill-conditioned processes. A design table is given for q les 31. An example is presented for the design of five uncorrelated signals with a common period N = 168 . Three of these signals are applied to identify the transfer function matrix as well as the singular values of a simulated distillation column. Results obtained are compared with those achieved using two alternative methods
Richness and Abundance of Carabidae and Staphylinidae (Coleoptera), in Northeastern Dairy Pastures Under Intensive Grazing
Dairy cattle has become popular to dairy farmers in the Northeast looking for management schemes to cut production costs. Carabidae (ground beetles) and Staphylinidae (rove beetles) are indicators of habitat disturbances, such as drainage of wetlands, or grassland for grazing animals, and their monitoring could provide one measure of ecosystem sustainability if intensive management systems expand or intensify in the future. Our objective was assess the abundance and species richness of these two beetle families under intensive grazing throughout Pennsylvania, southern New York and Vermont. We collected 4365 ground beetles (83 species) and 4,027 rove beetles (79 species) by pitfall traps in three years in Pennsylvania. Nine ground beetle species, Amara aenea, Poecilus chalcites, Pterostichus melanarius, Bembidion quadrimaculatum oppositum, Amara familiaris, Poecilus lucublandus, Agonum muelleri, Bembidion obtusum and Bembidion mimus represented 80% of the Carabidae collected.
Five other species were new to Pennsylvania. Four rove beetle species, Philonthus cognatus, Meronera venustula, Amischa analis, and Philonthus various = (carbonarius), comprised 74% of the total Staphylinidae collected. Yearly distributions of the dominant species did not change significantly in the three years with A. aenea and P. cognatus being most abundant every year. A parasitic rove beetle, Aleochara tristis, was recovered for the first time in Pennsylvania and Vermont since its release in the 1960\u27s to control face fly, Musca autumnalis.
Similar results were found in New York and Vermont. We collected 1,984 ground beetles (68 species). Pterostichus melanarius was most abundant. Pterostichus vernalis was detected for the first time in the United States (Vermont). It was previously reported from Montreal, Canada. We collected 843 rove beetles (45 species). Philonthus cognatus was the most abundant rove beetle. In addition, Tachinus corticinus, previously known only from Canada, was discovered for the first time in the United States in Vermont.
Pastures in Pennsylvania were diverse, containing 14 species of forage plants and 17 weed species. Botanical composition was similar in New York and Vermont. Sixteen species of grasses and legumes made up 90% of the plant composition and 36 species of weeds made up the remainder. This diverse plant ecosystem may explain the richness of ground and rove beetles in northeastern U.S. pastures because the heterogeneity in the plant population provided additional resources which can support a rich assemblage of beetles. Monitoring richness and abundance of Carabidae and Staphylinidae over three years in Pennsylvania suggests intensive grazing systems are ecologically sustainable
Forbidden Ca 2 in the sun unmasked by way of Venus
Eleven high-dispersion spectra of Venus, taken with blue Doppler shifts have permitted the unmasking of the 7323.88A forbidden line of Ca II from terrestrial absorption. An equivalent width is obtained of 7.4 + or - 0.4mA for this line in integrated sunlight. Our value of W sub lambda is smaller than previous values and much more accurate. The HSRA solar model gives a solar calcium abundance of A sub Ca = 6.21
An Alternative Parameterization of R-matrix Theory
An alternative parameterization of R-matrix theory is presented which is
mathematically equivalent to the standard approach, but possesses features
which simplify the fitting of experimental data. In particular there are no
level shifts and no boundary-condition constants which allows the positions and
partial widths of an arbitrary number levels to be easily fixed in an analysis.
These alternative parameters can be converted to standard R-matrix parameters
by a straightforward matrix diagonalization procedure. In addition it is
possible to express the collision matrix directly in terms of the alternative
parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV,
added Sec. VI, added Appendix, corrected typo
Recommended from our members
Case report: targeted whole exome sequencing enables the first prenatal diagnosis of the lethal skeletal dysplasia Osteocraniostenosis.
BACKGROUND: Osteocraniostenosis (OCS) is a rare genetic disorder characterised by premature closure of cranial sutures, gracile bones and perinatal lethality. Previously, diagnosis has only been possible postnatally on clinical and radiological features. This study describes the first prenatal diagnosis of OCS. CASE PRESENTATION: In this case prenatal ultrasound images were suggestive of a serious but non-lethal skeletal dysplasia. Due to the uncertain prognosis the parents were offered Whole Exome Sequencing (WES), which identified a specific gene mutation in the FAMIIIa gene. This mutation had previously been detected in two cases and was lethal in both perinatally. This established the diagnosis, a clear prognosis and allowed informed parental choice regarding ongoing pregnancy management. CONCLUSIONS: This case report supports the use of targeted WES prenatally to confirm the underlying cause and prognosis of sonographically suspected abnormalities
Heat capacity of square-well fluids of variable width
We have obtained by Monte Carlo NVT simulations the constant-volume excess
heat capacity of square-well fluids for several temperatures, densities and
potential widths. Heat capacity is a thermodynamic property much more sensitive
to the accuracy of a theory than other thermodynamic quantities, such as the
compressibility factor. This is illustrated by comparing the reported
simulation data for the heat capacity with the theoretical predictions given by
the Barker-Henderson perturbation theory as well as with those given by a
non-perturbative theoretical model based on Baxter's solution of the
Percus-Yevick integral equation for sticky hard spheres. Both theories give
accurate predictions for the equation of state. By contrast, it is found that
the Barker-Henderson theory strongly underestimates the excess heat capacity
for low to moderate temperatures, whereas a much better agreement between
theory and simulation is achieved with the non-perturbative theoretical model,
particularly for small well widths, although the accuracy of the latter worsens
for high densities and low temperatures, as the well width increases.Comment: 11 pages, 4 figures; figures now include additional perturbation
data; to be published in Mol. Phy
A design study of hydrazine and biowaste resistojets
A generalized modeling program was adapted in BASIC on a personal computer to compare the performance of four types of biowaste resistojets and two types of hydrazine augmenters. Analyzed biowaste design types were: (1) an electrically conductive ceramic heater-exchanger of zirconia; (2) a truss heater of platinum in cross flow; (3) an immersed bicoiled tubular heater-exchanger; and (4) a nonexposed, refractory metal, radiant heater in a central cavity within a heat exchanger case. Concepts 2 and 3 are designed to have an efficient, stainless steel outer pressure case. The hydrazine design types are: (5) an immersed bicoil heater exchanger and (6) a nonexposed radiant heater now with a refractory metal case. The ceramic biowaste resistojet has the highest specific impulse growth potential at 2000 K of 192.5 (CO2) and 269 s (H2O). The bicoil produces the highest augmenter temperature of 1994 K for a 2073 K heater giving 317 s at .73 overall efficiency. Detailed temperature profiles of each of the designs are shown. The scaled layout drawings of each are presented with recommended materials and fabrication methods
Scaling study of Si and strained Si n-MOSFETs with different high-k gate stacks
Using ensemble Monte Carlo device simulations, this paper studies the impact of interface roughness and soft-optical phonon scattering on the performance of sub-100nm Si and strained Si MOSFETs with different high-k gate stacks. Devices with gate lengths down to 25nm have been investigated
Blunting the Spike: the CV Minimum Period
The standard picture of CV secular evolution predicts a spike in the CV
distribution near the observed short-period cutoff P_0 ~ 78 min, which is not
observed. We show that an intrinsic spread in minimum (`bounce') periods P_b
resulting from a genuine difference in some parameter controlling the evolution
can remove the spike without smearing the sharpness of the cutoff. The most
probable second parameter is different admixtures of magnetic stellar wind
braking (at up to 5 times the GR rate) in a small tail of systems, perhaps
implying that the donor magnetic field strength at formation is a second
parameter specifying CV evolution. We suggest that magnetic braking resumes
below the gap with a wide range, being well below the GR rate in most CVs, but
significantly above it in a small tail.Comment: 5 pages, 4 figures; accepted for publication in MNRA
G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy
An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance
- …