28,359 research outputs found

    Design of ternary signals for MIMO identification in the presence of noise and nonlinear distortion

    Get PDF
    A new approach to designing sets of ternary periodic signals with different periods for multi-input multi-output system identification is described. The signals are pseudo-random signals with uniform nonzero harmonics, generated from Galois field GF(q), where q is a prime or a power of a prime. The signals are designed to be uncorrelated, so that effects of different inputs can be easily decoupled. However, correlated harmonics can be included if necessary, for applications in the identification of ill-conditioned processes. A design table is given for q les 31. An example is presented for the design of five uncorrelated signals with a common period N = 168 . Three of these signals are applied to identify the transfer function matrix as well as the singular values of a simulated distillation column. Results obtained are compared with those achieved using two alternative methods

    Richness and Abundance of Carabidae and Staphylinidae (Coleoptera), in Northeastern Dairy Pastures Under Intensive Grazing

    Get PDF
    Dairy cattle has become popular to dairy farmers in the Northeast looking for management schemes to cut production costs. Carabidae (ground beetles) and Staphylinidae (rove beetles) are indicators of habitat disturbances, such as drainage of wetlands, or grassland for grazing animals, and their monitoring could provide one measure of ecosystem sustainability if intensive management systems expand or intensify in the future. Our objective was assess the abundance and species richness of these two beetle families under intensive grazing throughout Pennsylvania, southern New York and Vermont. We collected 4365 ground beetles (83 species) and 4,027 rove beetles (79 species) by pitfall traps in three years in Pennsylvania. Nine ground beetle species, Amara aenea, Poecilus chalcites, Pterostichus melanarius, Bembidion quadrimaculatum oppositum, Amara familiaris, Poecilus lucublandus, Agonum muelleri, Bembidion obtusum and Bembidion mimus represented 80% of the Carabidae collected. Five other species were new to Pennsylvania. Four rove beetle species, Philonthus cognatus, Meronera venustula, Amischa analis, and Philonthus various = (carbonarius), comprised 74% of the total Staphylinidae collected. Yearly distributions of the dominant species did not change significantly in the three years with A. aenea and P. cognatus being most abundant every year. A parasitic rove beetle, Aleochara tristis, was recovered for the first time in Pennsylvania and Vermont since its release in the 1960\u27s to control face fly, Musca autumnalis. Similar results were found in New York and Vermont. We collected 1,984 ground beetles (68 species). Pterostichus melanarius was most abundant. Pterostichus vernalis was detected for the first time in the United States (Vermont). It was previously reported from Montreal, Canada. We collected 843 rove beetles (45 species). Philonthus cognatus was the most abundant rove beetle. In addition, Tachinus corticinus, previously known only from Canada, was discovered for the first time in the United States in Vermont. Pastures in Pennsylvania were diverse, containing 14 species of forage plants and 17 weed species. Botanical composition was similar in New York and Vermont. Sixteen species of grasses and legumes made up 90% of the plant composition and 36 species of weeds made up the remainder. This di­verse plant ecosystem may explain the richness of ground and rove beetles in northeastern U.S. pastures because the heterogeneity in the plant population provided additional resources which can support a rich assemblage of beetles. Monitoring richness and abundance of Carabidae and Staphylinidae over three years in Pennsylvania suggests intensive grazing systems are eco­logically sustainable

    Forbidden Ca 2 in the sun unmasked by way of Venus

    Get PDF
    Eleven high-dispersion spectra of Venus, taken with blue Doppler shifts have permitted the unmasking of the 7323.88A forbidden line of Ca II from terrestrial absorption. An equivalent width is obtained of 7.4 + or - 0.4mA for this line in integrated sunlight. Our value of W sub lambda is smaller than previous values and much more accurate. The HSRA solar model gives a solar calcium abundance of A sub Ca = 6.21

    An Alternative Parameterization of R-matrix Theory

    Get PDF
    An alternative parameterization of R-matrix theory is presented which is mathematically equivalent to the standard approach, but possesses features which simplify the fitting of experimental data. In particular there are no level shifts and no boundary-condition constants which allows the positions and partial widths of an arbitrary number levels to be easily fixed in an analysis. These alternative parameters can be converted to standard R-matrix parameters by a straightforward matrix diagonalization procedure. In addition it is possible to express the collision matrix directly in terms of the alternative parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV, added Sec. VI, added Appendix, corrected typo

    Heat capacity of square-well fluids of variable width

    Full text link
    We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a thermodynamic property much more sensitive to the accuracy of a theory than other thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing the reported simulation data for the heat capacity with the theoretical predictions given by the Barker-Henderson perturbation theory as well as with those given by a non-perturbative theoretical model based on Baxter's solution of the Percus-Yevick integral equation for sticky hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it is found that the Barker-Henderson theory strongly underestimates the excess heat capacity for low to moderate temperatures, whereas a much better agreement between theory and simulation is achieved with the non-perturbative theoretical model, particularly for small well widths, although the accuracy of the latter worsens for high densities and low temperatures, as the well width increases.Comment: 11 pages, 4 figures; figures now include additional perturbation data; to be published in Mol. Phy

    A design study of hydrazine and biowaste resistojets

    Get PDF
    A generalized modeling program was adapted in BASIC on a personal computer to compare the performance of four types of biowaste resistojets and two types of hydrazine augmenters. Analyzed biowaste design types were: (1) an electrically conductive ceramic heater-exchanger of zirconia; (2) a truss heater of platinum in cross flow; (3) an immersed bicoiled tubular heater-exchanger; and (4) a nonexposed, refractory metal, radiant heater in a central cavity within a heat exchanger case. Concepts 2 and 3 are designed to have an efficient, stainless steel outer pressure case. The hydrazine design types are: (5) an immersed bicoil heater exchanger and (6) a nonexposed radiant heater now with a refractory metal case. The ceramic biowaste resistojet has the highest specific impulse growth potential at 2000 K of 192.5 (CO2) and 269 s (H2O). The bicoil produces the highest augmenter temperature of 1994 K for a 2073 K heater giving 317 s at .73 overall efficiency. Detailed temperature profiles of each of the designs are shown. The scaled layout drawings of each are presented with recommended materials and fabrication methods

    Scaling study of Si and strained Si n-MOSFETs with different high-k gate stacks

    Get PDF
    Using ensemble Monte Carlo device simulations, this paper studies the impact of interface roughness and soft-optical phonon scattering on the performance of sub-100nm Si and strained Si MOSFETs with different high-k gate stacks. Devices with gate lengths down to 25nm have been investigated

    Blunting the Spike: the CV Minimum Period

    Full text link
    The standard picture of CV secular evolution predicts a spike in the CV distribution near the observed short-period cutoff P_0 ~ 78 min, which is not observed. We show that an intrinsic spread in minimum (`bounce') periods P_b resulting from a genuine difference in some parameter controlling the evolution can remove the spike without smearing the sharpness of the cutoff. The most probable second parameter is different admixtures of magnetic stellar wind braking (at up to 5 times the GR rate) in a small tail of systems, perhaps implying that the donor magnetic field strength at formation is a second parameter specifying CV evolution. We suggest that magnetic braking resumes below the gap with a wide range, being well below the GR rate in most CVs, but significantly above it in a small tail.Comment: 5 pages, 4 figures; accepted for publication in MNRA

    G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    Get PDF
    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance
    corecore