1,352 research outputs found

    Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery

    Get PDF
    AbstractPhase transitions in closed vesicles, i.e., microenvironments defined by the size of the vesicle, its contents, and permeability of its membrane are becoming increasingly important in several scientific disciplines including catalysis, growth of small crystals, cell function studies, and drug delivery. The membrane composed from lipid bilayer is in general impermeable to ions and larger hydrophilic ions. Ion transport can be regulated by ionophores while permeation of neutral and weakly hydrophobic molecules can be controlled by concentration gradients. Some weak acids or bases, however, can be transported through the membrane due to various gradients, such as electrical, ionic (pH) or specific salt (chemical potential) gradients. Upon permeation of appropriate species and reaction with the encapsulated species precipitation may occur in the vesicle interior. Alternatively, these molecules can also associate with the leaflets of the bilayer according to the transmembrane potential. Efficient liposomal therapeutics require high drug to lipid ratios and drug molecules should have, especially when associated with long circulating liposomes, low leakage rates. In this article we present very efficient encapsulation of two drugs via their intraliposomal precipitation, characterize the state of encapsulated drug within the liposome and try to fit the experimental data with a recently developed theoretical model. Nice agreement between a model which is based on chemical potential equilibration of membrane permeable species with experimental data was observed. The high loading efficiencies, however, are only necessary but not sufficient condition for effective therapies. If adequate drug retention within liposomes, especially in the case of long-circulating ones, is not achieved, the therapeutic index decreases substantially. Anticancer drug doxorubicin precipitates in the liposome interior in a form of gel with low solubility product and practically does not leak out in blood circulation in the scale of days. With an antibiotic, ciprofloxacin, the high loading efficacy and test tube stability is not reproduced in in vitro plasma leakage assays and in vivo. We believe that the reasons are higher solubility product of precipitated drug in the liposome, larger fraction of neutral molecules due closer pK values of the drug with the pH conditions in the solutions and high membrane permeability of this molecule. High resolution cryoEM shows that encapsulated anticancer agent doxorubicin is precipitated in the form of bundles of parallel fibers while antibiotic ciprofloxacin shows globular precipitate. Doxorubicin gelation also causes the change of vesicle shape

    Roadmap and strategy for overcoming infusion reactions to nanomedicines

    Get PDF
    Infusion reactions (IRs) are complex, immune-mediated side effects that mainly occur within minutes to hours of receiving a therapeutic dose of intravenously administered pharmaceutical products. These products are diverse and include both traditional pharmaceuticals (for example biological agents and small molecules) and new ones (for example nanotechnology-based products). Although IRs are not unique to nanomedicines, they represent a hurdle for the translation of nanotechnology-based drug products. This Perspective offers a big picture of the pharmaceutical field and examines current understanding of mechanisms responsible for IRs to nanomedicines. We outline outstanding questions, review currently available experimental evidence to provide some answers and highlight the gaps. We review advantages and limitations of the in vitro tests and animal models used for studying IRs to nanomedicines. Finally, we propose a roadmap to improve current understanding, and we recommend a strategy for overcoming the problem.National Cancer InstituteNational Institutes of Health | Ref. CA194058National Institutes of Health | Ref. EB022040Miskolc University. Applied Materials and Nanotechnology Center of ExcellenceXunta de Galicia | Ref. Xunta de Galici

    Contribution of CARPA to polystyrene NP effects in pigs

    Get PDF
    Background: It has been proposed that many hypersensitivity reactions to nanopharmaceuticals represent complement (C)-activation-related pseudoallergy (CARPA), and that pigs provide a sensitive animal model to study the phenomenon. However, a recent study suggested that pulmonary hypertension, the pivotal symptom of porcine CARPA, is not mediated by C in cases of polystyrene nanoparticle (PS-NP)-induced reactions. Goals: To characterize PS-NPs and reexamine the contribution of CARPA to their pulmonary reactivity in pigs. Study design: C activation by 200, 500, and 750 nm (diameter) PS-NPs and their opsonization were measured in human and pig sera, respectively, and correlated with hemodynamic effects of the same NPs in pigs in vivo. Methods: Physicochemical characterization of PS-NPs included size, ζ-potential, cryo-transmission electron microscopy, and hydrophobicity analyses. C activation in human serum was measured by ELISA and opsonization of PS-NPs in pig serum by Western blot and flow cytometry. Pulmonary vasoactivity of PS-NPs was quantified in the porcine CARPA model. Results: PS-NPs are monodisperse, highly hydrophobic spheres with strong negative surface charge. In human serum, they caused size-dependent, significant rises in C3a, Bb, and sC5b-9, but not C4d. Exposure to pig serum led within minutes to deposition of C5b-9 and opsonic iC3b on the NPs, and opsonic iC3b fragments (C3dg, C3d) also appeared in serum. PS-NPs caused major hemodynamic changes in pigs, primarily pulmonary hypertension, on the same time scale (minutes) as iC3b fragmentation and opsonization proceeded. There was significant correlation between C activation by different PS-NPs in human serum and pulmonary hypertension in pigs. Conclusion: PS-NPs have extreme surface properties with no relevance to clinically used nanomedicines. They can activate C via the alternative pathway, entailing instantaneous opsonization of NPs in pig serum. Therefore, rather than being solely C-independent reactivity, the mechanism of PS-NP-induced hypersensitivity in pigs may involve C activation. These data are consistent with the “double-hit” concept of nanoparticle-induced hypersensitivity reactions involving both CARPA and C-independent pseudoallergy

    Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading

    Get PDF
    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs

    Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids

    Get PDF
    We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies
    corecore