68 research outputs found
Valorization of pyrolysis biochar by mild oxidation and its application as adsorbent and catalyst support
La conversion thermochimique de la biomasse se traduit par un sous-produit solide appelĂ© biochar. Cette substance Ă©cologique peu coĂ»teuse a rĂ©cemment fait lâobjet dâune attention croissante pour son utilisation dans plusieurs applications, en raison de ses propriĂ©tĂ©s de surface uniques, de sa stabilitĂ© physique et de son inertie. Les applications les plus courantes du biochar sont dans lâadsorption, lâamendement du sol et comme support de catalyseur. LâefficacitĂ© du biochar dans une application ciblĂ©e dĂ©pend fortement de ses propriĂ©tĂ©s de surface physicochimiques, nĂ©cessitant ainsi une modification de la surface du biochar. Cette thĂšse de recherche se compose de deux parties gĂ©nĂ©rales. La premiĂšre partie est la modification et la caractĂ©risation de la surface du biochar. Le chapitre 1 destinĂ© aux ingĂ©nieurs chimistes dĂ©butants, rappelle les bases de la physisorption de lâazote, prĂ©sentant le principe gĂ©nĂ©ral de la dĂ©termination de la surface spĂ©cifique (SSA) et lâestimation de la distribution de la taille des pores (PSD). Ces propriĂ©tĂ©s, câest-Ă -dire SSA et PSD, reprĂ©sentant la morphologie des solides, jouent un rĂŽle vital dans la performance des matĂ©riaux carbonĂ©s dans les applications susmentionnĂ©es. La SSA est gĂ©nĂ©ralement dĂ©terminĂ©e par la thĂ©orie de Brunauer-Emmett-Teller (BET) Ă partir de la branche dâadsorption des isothermes dâadsorption-dĂ©sorption N2 , par un intervalle de pression relative de 0, 05 < P/P0 < 0, 3. La PSD est estimĂ©e en utilisant soit la mĂ©thode de Barrett-JoynerHalenda (BJH) de la branche de dĂ©sorption, soit la thĂ©orie fonctionnelle de densitĂ© non locale (NLDFT) de la branche dâadsorption. Ce dernier permet une estimation plus raisonnable de la PSD. La modification de la surface dâun biochar obtenu par le procĂ©dĂ© de pyrolyse de Pyrovac Inc. a Ă©tĂ© rĂ©alisĂ©e par activation Ă la vapeur et par oxydation mĂ©nagĂ©e Ă lâair. Le chapitre 2 rĂ©sume ainsi les rĂ©sultats, obtenus par des analyses de caractĂ©risation de surface. Le but de ce chapitre Ă©tait dâamĂ©liorer notre comprĂ©hension du contrĂŽle des caractĂ©ristiques physicochimiques de la surface du biochar lors de lâactivation et de lâoxydation. Les conditions dâactivation optimales en termes de combustion du biochar le plus faible avec le SSA le plus Ă©levĂ© ont Ă©tĂ© trouvĂ©es Ă 900 °C sous une pression partielle de vapeur de 53 kPa sur 60 min. Ces conditions ont conduit Ă un rendement de 8% (en fraction Ă poids basĂ© sur la biomasse humide initiale) avec un SSA Ă©gal Ă 1025 m2 g â1 . La concentration de Boehm en groupes iii fonctionnels contenant de lâoxygĂšne du biochar a Ă©tĂ© rĂ©duite de 2.2 Ă 1.4 mmol gâ1 Biochar lors de lâactivation. Les conditions optimales dâoxydation en termes de la combustion la plus faible et de concentration carboxylique de Boehm la plus Ă©levĂ©e ont Ă©tĂ© trouvĂ©es Ă 200 °C pour 60 min en utilisant 164 ml minâ1 dâair extra sec qui en Ă©coulement. Lâoxydation du biochar a abouti Ă un rendement final de 18% (en fraction Ă poids basĂ© sur la biomasse humide initiale), augmentant la concentration carboxylique du biochar de 0.4 Ă 4.2 mmol gâ1 Biochar. Les conditions de lâoxydation nâont cependant pas pu introduire de fonctions carboxyliques Ă la surface du charbon actif. Dans la deuxiĂšme partie, le biochar a Ă©tĂ© utilisĂ© dans deux applications, reposant sur lâĂ©change de cations. Ces applications sont lâutilisation du biochar dans lâadsorption de cations de mĂ©taux lourds des solutions aqueuses et le support de catalyseur. Des observations dĂ©taillĂ©es faites dans Chapitre 2, ont suggĂ©rĂ© que le biochar oxydĂ© est une sĂ©lection plus pratique pour des applications ciblĂ©es. Chapitre 3 rapporte des observations expĂ©rimentales du comportement du biochar envers lâadsorption des cations plomb (Pb2+). Le but de ce chapitre Ă©tait dâexaminer la capacitĂ© du biochar pour lâĂ©change de cations avant et aprĂšs dâoxydation mĂ©nagĂ©e Ă lâair. Les rĂ©sultats ont montrĂ© que lâoxydation de lâair amĂ©liore la capacitĂ© dâadsorption Ă lâĂ©quilibre du biochar de 2.5 Ă 44 mg gâ1 . En utilisant les conditions optimales dâadsorption suggĂ©rĂ©es par la mĂ©thodologie de surface de rĂ©ponse (RSM), lâanalyse SEM/EDX a montrĂ© que les bords dĂ©fectueux du carbone avec la fraction dâoxygĂšne la plus Ă©levĂ©e sont les endroits favorables pour adsorber les cations de plomb. Le biochar a Ă©tĂ© utilisĂ© pour la prĂ©paration du catalyseur Ru/C, par Ă©change dâions en utilisant le prĂ©curseur Ru(NH3 )6Cl2 . Lâanalyse SEM a montrĂ© que la surface du biochar oxydĂ© Ă©tait sur-Ă©changĂ©e avec du ruthĂ©nium aprĂšs imprĂ©gnation. Les analyses TEM et H2 -chemisorption ont tous les deux dĂ©montrĂ© que Ru a une dispersion plus Ă©levĂ©e (câest-Ă -dire double) sur le biochar oxydĂ© que sur le non oxydĂ©. DâaprĂšs lâanalyse XPS, il a Ă©tĂ© constatĂ© quâune oxydation mĂ©nagĂ©e empĂȘche la sĂ©grĂ©gation de Ru sur la surface du carbone. LâactivitĂ© du catalyseur a Ă©tĂ© Ă©tudiĂ©e dans lâhydrogĂ©nation du furfural (FF) en alcool furfurylique (FA). Dans des conditions discontinu, Ru supportĂ© sur le biochar oxydĂ© a entraĂźnĂ© une sĂ©lectivitĂ© plus Ă©levĂ©e en alcool furfurylique, ce qui a permis dâobtenir la valeur la plus Ă©levĂ©e de la sĂ©lectivitĂ© 93% FA Ă 53% FF. LâĂ©tude de lâeffet des conditions dâhydrogĂ©nation a suggĂ©rĂ© que la dissolution ou la diffusion de H2 en phase liquide est trĂšs probablement lâĂ©tape limitante de vitesse.Biomass thermochemical conversion results in a solid byproduct designated as biochar. This inexpensive eco-friendly substance has recently received increasing attention for use in several applications, owing to its unique surface properties, physical stability, and inertness. The most common biochar applications are in adsorption, soil amendment, and as catalyst support. The efficacy of biochar in a targeted application strongly depends on its physicochemical surface properties, thereby requiring biochar surface modification. This research-based thesis consists of two general parts. The first part is biochar surface modification and characterization. Chapter 1 provides inexperienced Chemical/Material Engineers with nitrogen physisorption tutorial, presenting general principle of specific surface area (SSA) determination, and the estimation of pore size distribution (PSD). These properties, i.e., SSA and PSD, representing the morphology of solids, play a vital role in the performance of carbonaceous materials in the above-mentioned applications. SSA is usually determined by the Brunauer-EmmettTeller (BET) theory from the adsorption branch of N2 adsorption-desorption isotherms, over the relative pressure range of 0.05 < P/P0 < 0.3. PSD is estimated using either BarrettJoyner-Halenda (BJH) method from desorption branch, or non-local density functional theory (NLDFT) from adsorption branch. The latter allows more reasonable estimation of PSD. Surface modification of a biochar obtained by the pyrolysis process of Pyrovac Inc. was achieved by steam activation and by mild air oxidation. Chapter 2 thus summarizes the results, obtained by surface characterization analyses. The aim of this chapter was increasing our understanding of controlling biochar physicochemical surface characteristics upon activation and oxidation. The optimal activation conditions in terms of the lowest biochar burn-off with the highest SSA were found at 900 °C under a steam partial pressure of 53 kPa over 60 min. These conditions led to a yield of 8 wt.% (based on the initial wet biomass) with SSA equal to 1025 m2 g â1 . Boehmâs concentration of oxygen-containing functional groups of the biochar was decreased from 2.2 to 1.4 mmol gâ1 Biochar upon the activation. The optimal conditions of oxidation in terms of the lowest burn-off and the highest Boehmâs carboxylic concentration were found at 200 °C for 60 min using 164 mL minâ1 of flowing extra dry air. The oxidation of the biochar resulted in a final yield of 18 wt.% (based on the initial wet biomass), v increasing the carboxylic concentration of the biochar from 0.4 to 4.2 mmol gâ1 Biochar. These oxidation conditions did not however allow introducing carboxylic functional groups on the surface of the activated carbon. In the second part, biochar was employed in two applications, relying on cation-exchange. These applications are biochar use in adsorption of heavy metal cations from aqueous solutions, and catalyst support. Detailed observations carried out in Chapter 2, suggested that mildly oxidized biochar is more convenient for the targeted applications. Chapter 3 reports experimental observations of the biochar behavior towards lead cations (Pb2+) adsorption. The purpose of this chapter was examining the capacity of biochar for cation-exchange before and after mild air oxidation. Results showed that the mild air oxidation improves capacity of adsorption of the biochar from 2.5 to 44 mg gâ1 . Using the optimal conditions of adsorption suggested by response surface methodology (RSM), SEM/EDX analysis showed that defective edges of carbon with the highest oxygen fraction are the favorable places to adsorb lead cations. The biochar was used for preparation of Ru/C catalyst, via ion-exchange using Ru(NH3 )6Cl2 precursor. SEM analysis showed that surface of the oxidized biochar was over exchanged with ruthenium after impregnation. TEM and H2 -chemisorption analyses both demonstrated that Ru has higher dispersion (i.e., double) on the oxidized biochar than on the unoxidized one. From XPS analysis, it was found that mild oxidation prevents Ru segregation from carbon surface. Catalyst activity was investigated in hydrogenation of furfural (FF) to furfuryl alcohol (FA). Under batch conditions, Ru supported on the mildly oxidized biochar resulted in a higher selectivity to furfuryl alcohol, with the highest value of 93% FA selectivity at 53% FF conversion obtained. Investigating the effect of the hydrogenation conditions suggested that H2 dissolution or diffusion in liquid phase is very likely the rate limited step
- âŠ