6 research outputs found

    Investigation of Used Water Sediments from Ceramic Tile Fabrication

    No full text
    Used water treatment is one of the most important aspects of environmental protection regarding industrial processes. Particulate matter dispersions affect water parameters; for example, increased pH values such as 10.21 are found for used floor tile water, and values of 10.84 are found for used wall tile water. However, pH decreases to about 9.42 after the sediment filtration process. This influences water turbidity, which is higher for used wall tile water due to its finer suspensions, and it is considerably decreased after the filtration process. Thus, the main aim of the present research is to investigate particulate matter dispersion into the water flows that are involved in ceramic tile technological processes before and after treatment at used water treatment facilities. X-ray diffraction (XRD) coupled with mineralogical optical microscopy (MOM) reveals that waters from wall tiles and floor tiles have similar mineral dispersions, containing mineral particles of quartz (5–50 μm), kaolinite (1–30 μm), and mullite (5–125 μm). Glass particles (having a dark appearance at MOM investigation) were also found in both samples in a size range of 20–55 μm. High-resolution SEM imaging coupled with the EDS elemental analysis confirms the XRD and MOM observations. Water samples collected after treatment at the treatment facility reveal a significant reduction in the particulate matter MOM, evidencing only small traces of quartz, kaolinite, and mullite in a size range of 1–15 μm, with most of the particles being attached to the filters, as confirmed by XRD. Atomic force microscopy (AFM) effectuated on this sample reveals the presence of kaolinite nanoparticles with a tabular–lamellar aspect and sizes ranging from 40 to 90 nm. The obtained results prove the efficacy of the filtering system regarding targeted particulate matters, ensuring water recirculation into the technological processes. The sludge resulting from the filtration process presents with a dense grainy structure of sediment particles containing quartz, mullite, and kaolinite, along with traces of iron hydroxide crystallized as goethite. Therefore, it cannot be reused in the technological flux, as the iron causes glaze staining; but the observed microstructure, along with the mineralogical composition, indicates that it could be used for other applications, such as ecological bricks or plasters, which will be further investigated

    PRF-Solution in Large Sinus Membrane Perforation with Simultaneous Implant Placement-Micro CT and Histological Analysis

    No full text
    Background: The purpose of the study was to analyze the efficacy of platelet-rich fibrin (PRF) as a single augmentation material for complicated cases of maxillary sinus floor elevation, resulting from membrane perforation or previous infections. Methods: Implant insertion in the posterior region of the maxilla was simultaneously performed with maxillary sinus floor augmentation. Schneiderian membrane elevation can be accompanied by extremely serious sinus membrane perforation, due to accidental tearing or intended incision for mucocele removal. PRFs were placed in the sinus cavity both for membrane sealing and sinus floor grafting. Radiological, histological and micro-CT analyses were performed. Implant survival was assessed every 6 months for 1 to 4 years, with a mean follow up of 1.8 years, after prosthetic loading. Radiological examinations were performed on CBCT at 9 and 12 and 36 months postoperatively and revealed improved degrees of radiopacity. Results: 19 implants were simultaneously placed in the course of nine maxillary sinus floor augmentation surgeries, with successful outcomes in terms of bone grafting and implant integration. New bone formation was evidenced 12 months postoperatively on radiological examination, micro-CT analysis, and histological analysis of a harvested bone segment from the augmented maxillary sinus. The mean gain in bone height of the sinus floor augmentation was 6.43 mm, with a maximum of 9 mm. The mean amount of vital bone obtained from histologic assessment was 52.30%, while bone volume/tissue volume ratio in micro-CT 3D had a mean of 50.32%. Conclusions: PRF may be considered as an alternative treatment for a single surgery of sinus augmentation with simultaneous implant placement, even in complicated cases with significant sinus membrane tearing

    The 12th Edition of the Scientific Days of the National Institute for Infectious Diseases “Prof. Dr. Matei Bals” and the 12th National Infectious Diseases Conference

    No full text
    corecore