1,105 research outputs found

    Isotopes in hydrology and hydrogeology

    Get PDF
    The structure, status, and processes of the groundwater system, which can only be acquired through scientific research efforts, are critical aspects of water resource management. Isotope hydrology and hydrogeology is a genuinely interdisciplinary science. It developed from the application of methods evolved in physics (analytical techniques) to problems of Earth and the environmental sciences since around the 1950s. In this regard, starting from hydrogeochemical data, stable and radioactive isotope data provide essential tools in support of water resource management. The inventory of stable isotopes, which has significant implications for water resources management, has grown in recent years. Methodologies based on the use of isotopes in a full spectrum of hydrological problems encountered in water resource assessment, development, and management activities are already scientifically established and are an integral part of many water resource investigations and environmental studies. The driving force behind this Special Issue was the need to point the hydrological and water resource management societies in the direction of up-to-date research and best practices

    The importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to evaluate the soil contamination

    Get PDF
    Heavy metals are natural constituents of soils and their concentration varies depending on parental materials. In the last years, the content of heavy metal in soils has increased due to human activities as: distribution of fertilizers, pesticides, industries, waste disposal and air pollution. Due to these activities the life capacity of soils decreased; especially where the natural background is already high because of natural parental material richness in heavy metal. As a matter of fact it is very important to distinguish between the natural background values and anthropogenic inputs, and to understand that the background values change from area to area and with the scale of the area investigated. There is currently a wide variety of methods used to evaluate soil contamination. To evaluate the soil contamination rate different indexes like Enrichment Factor (EF) and geoaccumulation index (Igeo) can be applied. These indexes are used to assess the presence and intensity of anthropogenic contaminant deposition on surface soil

    Soil contamination evaluation by Enrichment Factor (EF) and Geoaccumulation Index (Igeo)

    Get PDF
    Heavy metals are natural constituents of soils and their concentration varies depending on parental materials. The soils were formed by. In the last years, the content of heavy metal in soils has increased due to human activities as: distribution of fertilizers, pesticides, industries, waste disposal and air pollution. Due to these activities the life capacity of soils decreased; especially where the natural background is already high because of natural parental material richness in heavy metal. As a matter of fact it is very important to distinguish between the natural background values and anthropogenic inputs, and to understand that the background values change from area to area and with the scale of the area investigated. To evaluate the soil contamination rate different indexes like Enrichment Factor (EF) and geoaccumulation index (Igeo) can be applied. These indexes are used to assess the presence and intensity of anthropogenic contaminant deposition on surface soil

    Strontium Isotope as Tracers of Groundwater Contamination

    Get PDF
    Groundwater flowing under a municipal solid waste landfill has been studied to identify potential contamination phenomenon and to test strontium isotopic composition as a natural tracer of contamination. The study was carried on in June 2014 in central Italy. Five selected boreholes were selected and analysed according to their location related to the site. Samples taken from boreholes placed upward to the site were considered as uncontaminated groundwater. One borehole located downward from the site and with major contaminant values has been considered as potentially contaminated end-member. Sr isotope results show that samples located upward from the site present lower Sr concentration and highest Sr isotopic values, which reflects weathered bedrock, while borehole located downward from the site show lowest Sr values and 87Sr/86Sr ratio, probably due to pollution by landfill leachate. The mixing calculation highlights the possible mixing phenomenon for the other samples located downward from the site

    Climatic variations in Macerata province (Central Italy)

    Get PDF
    The province of Macerata, Italy, is a topographically complex region which has been little studied in terms of its temperature and precipitation climatology. Temperature data from 81 weather stations and precipitation data from 55 rain gauges were obtained, and, following quality control procedures, were investigated on the basis of 3 standard periods: 1931-1960, 1961-1990 and 1991-2014. Spatial and temporal variations in precipitation and temperature were analysed on the basis of six topographic variable (altitude, distance from the sea, latitude, distance from the closest river, aspect, and distance from the crest line). Of these, the relationship with altitude showed the strongest correlation. Use of GIS software allowed investigation of the most accurate way to present interpolations of these data and assessment of the differences between the 3 investigated periods. The results of the analyses permit a thorough evaluation of climate change spatially over the last 60 years. Generally, the amount of precipitation is diminished while the temperature is increased across the whole study area, but with significant variations within it. Temperature increased by 2 to 3 °C in the central part of the study area, while near the coast and in the mountains the change is between about 0 and 1 °C, with small decreases focused in the Appennine and foothill belt (-1 to 0 °C). For precipitation, the decrease is fairly uniform across the study area (between about 0-200 mm), but with some isolated areas of strong increase (200-300 mm) and only few parts of territory in which there is an increase of 0-200 mm, mainly in the southern part of the coast, to the south-west and inland immediately behind the coast. The monthly temperature trend is characterized by a constant growth, while for precipitation there is a strong decrease in the amount measured in January, February and October (between 25 and 35 mm on average)

    The argali (Ovis ammon antiqua) from the Magliana area (Rome)

    Get PDF
    During the Middle Pleistocene, the subspecies was widespread from Georgia to Portugal, though it is scantily recorded in local faunal assemblages of Southern Europe. Its occurrence in a few Late Pleistocene sites needs to be confirmed. In Italy, the subspecies is recorded in the late Galerian fauna of Visogliano (MIS 13 - 10) as well as in the Magliana area, where an incomplete skull was found at the beginning of the last century. Although the precise location where this specimen was found is unknown, on the basis of the results of the geochemical analysis performed on a small amount of sediment, sampled from the filling of the inner cavities of the horn-cores, and considering the stratigraphy of the area, the hypothesis that the skull comes from the deposits of the PG4 sequence (MIS14 partim - MIS13) cannot be ruled out. This hypothetical remark would confirm the occurrence in Italy of the argali in late Galerian faunas. The dimensions of Ovis ammon antiqua from the Magliana area fit well within the range of variability of the larger specimens, likely males, found at La Caune de L’Arago (France) (MIS 14-12), from which the Italian specimen differs in having less twisted and more dorso-ventrally curved horn-cores

    Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy)

    Get PDF
    Seismic precursors are an as yet unattained frontier in earthquake studies. With the aim of making a step towards this frontier, we present a hydrogeochemical dataset associated with the 2016 Amatrice- Norcia seismic sequence (central Apennines, Italy), developed from August 24th, with an Mw 6.0 event, and culminating on October 30th, with an Mw 6.5 mainshock. The seismic sequence occurred during a seasonal depletion of hydrostructures, and the four strongest earthquakes (Mw ≥ 5.5) generated an abrupt uplift of the water level, recorded up to 100 km away from the mainshock area. Monitoring a set of selected springs in the central Apennines, a few hydrogeochemical anomalies were observed months before the onset of the seismic swarm, including a variation of pH values and an increase of As, V, and Fe concentrations. Cr concentrations increased immediately after the onset of the seismic sequence. On November 2016, these elements recovered to their usual low concentrations. We interpret these geochemical anomalies as reliable seismic precursors for a dilational tectonic setting

    Application of 2H and 18O Isotopes for Tracing Municipal Solid Waste Landfill Contamination of Groundwater. Two Italian Case Histories

    Get PDF
    Groundwater contamination due to municipal solid waste landfills leachate is a serious environmental threat. During recent years, the use of stable isotopes as environmental tracers to identify groundwater contamination phenomena has found application to environmental engineering. Deuterium (2H) and oxygen (18O) isotopes have successfully used to identify groundwater contamination phenomena if submitted to interactions with municipal solid waste landfills leachate, with a significant organic amount. The paper shows two case studies, in central and southern Italy, where potential contamination phenomenon of groundwater under municipal solid waste landfills occurred. In both cases, isotope compositions referred to 2H and 18O highlight a δ2H enrichment for some groundwater samples taken in wells, located near leachate storage wells. The δ2H enrichment is probably caused by methanogenesis phenomena, during which the bacteria use preferentially the hydrogen “lighter” isotope (1H), and the remaining enriched the “heavier” isotope (2H). The study of the isotope composition variation, combined with the spatial trend of some analytes (Fe, Mn, Ni) concentrations, allowed to identify interaction phenomena between the municipal solid waste landfills leachate and groundwater in both case histories. Therefore, these results confirm the effectiveness of 2H isotopes application as environmental tracer of groundwater contamination phenomena due to mixing with municipal solid waste landfills leachate

    Isotope-Based Early-Warning Model for Monitoring Groundwater–Leachate Contamination Phenomena: First Quantitative Assessments

    Get PDF
    Groundwater contamination due to municipal solid waste landfills’ leachate is a serious environmental threat. Deuterium (2H) and oxygen (18O) isotopes have been successfully applied to identify groundwater contamination processes, due to interactions with municipal solid waste landfills’ leachate, including significant organic amounts. A parameter influencing the isotope content of deuterium and oxygen18 is the deuterium excess (d or d-excess). This paper presents a d-isotope-based model, defined early-warning model, depending on the assessment of the deuterium excess variations in groundwater samples. The isotopic results are corroborated with the trace elements’ concentrations (Fe, Mn, Ni, Co and Zn), suggesting that the methanogenic activity diminished under trace element limitation. This model provides the determination of an index, F, as the percentage variation of d-excess, which makes it possible to define an alert level system to assess and check groundwater contamination by leachate. The procedure shows that values of F index higher than 1.1 highlight possible contamination phenomena of groundwater due to leachate and, therefore, actions by the municipal solid waste landfill management are required. This early-warning model is presented by the application to a case study in Central Italy in order to evaluate innovative aspects and opportunities to optimize the model. The application of the procedure to the case study highlighted anomalous values of the F index for the samples AD16 (Fmax = 2.069) and AD13 (Fmax = 1.366) in January, April, July and October surveys as well as the boundary values (1 ≤ F ≤ 1.1) for samples AD73 (F = 1.229) and AD68 (F = 1.219) in the April survey. The proposed model can be a useful management tool for monitoring the potential contamination process of groundwater due to the presence of landfills with municipal solid waste, including a significant organic component
    • …
    corecore