424 research outputs found
On the dynamics and robustness of the chemostat with multiplicative noise
The stochastic dynamics of a two-state bioreactor model with random feed flow fluctuations and non-monotonic specific growth rate is analyzed. Using the Fokker-Planck equation approach for describing the probability density function (PDF) evolution the lack of stochastic robustness due to deterministic bifurcation phenomena for the open-loop reactor operating under optimal (maximum production) operation condition is established, and the associated stochastic stabilization problem is addressed. Inherent differences between the presence of multiplicative noise, due to the feed flow fluctuations, and additive background noise are analytically established. Numerical simulation results illustrate these inherent differences, the stochastic fragility of the open-loop operation yielding a stochastic extinction phenomenon, as well as the stochastic PDF stabilization with a proportional feedback control
Application of UV-C light for preventing the light-struck taste in white wine
The light-struck taste is a fault occurring in white wine bottled in clear bottles and exposed to light. The defect is due to the formation of methanethiol and dimethyl sulphide responsible for like-cabbage aroma arising from the reaction between riboflavin (RF), a highly light-sensitive compound, and methionine (Met). The light-struck taste is limited for RF concentration lower than 50 \ub5g/L achieved through the choice of a Saccharomyces strain low RF-producer and the RF removal with charcoal and bentonite as fining agents [1]. Moreover, the protective effect of wood tannins has been recently showed, especially galla tannins [2]. Due to the RF sensibility to light, the UV-C light treatment was assayed. A synthetic wine solution spiked with RF (200 \ub5g/L) and Met (3 mg/L) was irradiated with UV-C light up to 2000 J/L and RF decay was monitored. A linear decrease as UV-C light intensity increase was observed. RF was lower than 50 \ub5g/L and 20 \ub5g/L for 1500 J/L and 2000 J/L treatments, respectively. The addition of tannins (40 mg/L) led to a limited RF decrease (73%) maybe due to their shading properties [3]. Even though the UV-C light treatment is not admitted by the International Organization of Vine and Wine, its application could represent a tool for avoid the risk of light-struck taste development in bottled wine. The light exposure when the redox potential is high and the combined use of tannins could limit the appearance of this fault after the wine bottling preserving the wine quality during the shelf-life
Investigation of mechanisms underlying chaotic genetic patchiness in the intertidal marbled crab Pachygrapsus marmoratus (Brachyura: Grapsidae) across the Ligurian Sea
Abstract Background Studies on marine community dynamics and population structures are limited by the lack of exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes reproductive success and collective dispersal. In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month. P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic patterns across the species’ distribution range were described. This has been explained as an effect of subtle geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci. Results We recorded genetic heterogeneity among our Ligurian Sea samples with the occurrence of genetic clusters not matching the original populations and a slight inter-population divergence, with the geographically most distant populations being the genetically most similar ones. Moreover, individuals from each site were assigned to all the genetic clusters. We also recorded evidences of self-recruitment and a higher than expected within-site kinship. Conclusions Overall, our results suggest that the chaotic genetic patchiness we found in P. marmoratus Ligurian Sea populations is the result of a combination of differences in reproductive success, en masse larval dispersion and local larval retention. This study defines P. marmoratus as an example of marine spawner whose genetic pool is not homogenous at population level, but rather split in a chaotic mosaic of slightly differentiated genetic patches derived from complex and dynamic ecological processes
Machine learning for monitoring and control of NGL recovery plants
In this contribution, the monitoring and control problem of the natural gas liquids (NGL) extraction process is addressed by exploiting a data-driven approach. The cold residue reflux (CRR) process scheme is considered and simulated by using the process simulator Aspen HYSYS®, with the main targets of the achievement of 84% ethane recovery and low levels of methane impurity at the bottom of the demethanizer column. The respect of product quality is obtained by designing a proper control strategy that uses a data-driven approach based on a neural network to estimate the unmeasured outputs. The performance of the controlled system is assessed by simulating the process under various input conditions evaluating different control structures such as direct control and cascade control of the temperature in the column
Identification of a cell population model for algae growth processes
The growth process of a Chlamydomonas reinhardtii cell population is modelled with experimental data obtained in a batch reactor. To describe the growth process of this culture, the Droop model, extended by cell population balance model, is considered. On the basis of available measurements and the mathematical model, an optimization problem is defined in order to determine the kinetic parameter values for the growth functions of the Droop model and the cell division parameters of the cell population balance model
Control of a natural gas liquid recovery plant in a GSP unit under feed and composition disturbances
Recent technological improvements have driven the rapid increase in natural gas production from unconventional reservoirs. The heaviest hydrocarbon fraction of this fossil fuel, the so-called natural gas liquids (NGL), have greater economic interest justifying the attention on its separation process from the raw gas. Various process schemes have been developed and studied for the NGL recovery, including the conventional, cold residue recycle (CRR), and the gas subcooled process (GSP). This study aims to assess different control strategies for a GSP unit and determine the most appropriate and effective process control scheme. For this, the dynamic responses for each control scheme are evaluated by changing feed flow rate and composition. The main targets are the achievement of 84% ethane recovery and low levels of methane impurity at the bottom of the demethanizer column. Due to the high cost of composition analyzers and the high delays introduced by composition controllers under the presence of flow disturbances, the control goals are reached by the knowledge of on-line temperature measurements. This is done by considering different temperature control structures such as the direct temperature control and cascade control, plus a pressure compensator. The results are compared, in presence of composition disturbances, with the action of a hybrid cascade control that uses in-line delayed concentration measurements to update the controller reference at each sampling period. Here, the hybrid and the simple cascade controls show the best control performance
Panta Rhei: an evolving scientific decade with a focus on water systems
Abstract. The paper presents an overview of the activity of Panta Rhei, the research decade launched in 2013 by the International Association of Hydrological Sciences. After one year of activity Panta Rhei has already stimulated several initiatives and a worldwide involvement of researchers in hydrology and sister disciplines. Providing an overview of the status of Panta Rhei is essential to further promote the participation of scientists and the completion of its structure, which is currently being shaped by receiving Research Theme and Working Group proposals from the community
Аналіз текстури фрактографічних зображень на основі спектра фрактальних розмірностей Реньї
У статті досліджено застосування спектра фрактальних розмірностей Реньї для аналізу текстури
фрактографічних зображень. Запропоновано використовувати цей підхід для класифікації типів зламів.В статье исследовано применение спектра фрактальных размерностей Реньи для анализа текстуры
фрактографических изображений. Предложено использовать этот подход для классификации типов
изломов.Investigated the use of the spectrum of fractal dimensions Renyi for texture analysis fraktohraphic images.
Proposed to use this approach for the classification of types of fractures
- …