9,258 research outputs found
Exact extreme value statistics at mixed order transitions
We study extreme value statistics (EVS) for spatially extended models
exhibiting mixed order phase transitions (MOT). These are phase transitions
which exhibit features common to both first order (discontinuity of the order
parameter) and second order (diverging correlation length) transitions. We
consider here the truncated inverse distance squared Ising (TIDSI) model which
is a prototypical model exhibiting MOT, and study analytically the extreme
value statistics of the domain lengths. The lengths of the domains are
identically distributed random variables except for the global constraint that
their sum equals the total system size . In addition, the number of such
domains is also a fluctuating variable, and not fixed. In the paramagnetic
phase, we show that the distribution of the largest domain length
converges, in the large limit, to a Gumbel distribution. However, at the
critical point (for a certain range of parameters) and in the ferromagnetic
phase, we show that the fluctuations of are governed by novel
distributions which we compute exactly. Our main analytical results are
verified by numerical simulations.Comment: 25 pages, 6 figures, 1 tabl
Monolithic optoelectronic integration of a GaAlAs laser, a field-effect transistor, and a photodiode
A low threshold buried heterostructure laser, a metal-semiconductor field-effect transistor, and a p-i-n photodiode have been integrated on a semi-insulating GaAs substrate. The circuit was operated as a rudimentary optical repeater. The gain bandwidth product of the repeater was measured to be 178 MHz
High-speed GaAlAs/GaAs p-i-n photodiode on a semi-insulating GaAs substrate
A high-speed, high-responsivity GaAlAs/GaAs p-i-n photodiode has been fabricated on a GaAs semi-insulating substrate. The 75-µm-diam photodiode has a 3-dB bandwidth of 2.5 GHz and responsivity of 0.45 A/W at 8400 Å (external quantum efficiency of 65%). The diode is suitable for monolithic integration with other optoelectronic devices
How Unsplittable-Flow-Covering helps Scheduling with Job-Dependent Cost Functions
Generalizing many well-known and natural scheduling problems, scheduling with
job-specific cost functions has gained a lot of attention recently. In this
setting, each job incurs a cost depending on its completion time, given by a
private cost function, and one seeks to schedule the jobs to minimize the total
sum of these costs. The framework captures many important scheduling objectives
such as weighted flow time or weighted tardiness. Still, the general case as
well as the mentioned special cases are far from being very well understood
yet, even for only one machine. Aiming for better general understanding of this
problem, in this paper we focus on the case of uniform job release dates on one
machine for which the state of the art is a 4-approximation algorithm. This is
true even for a special case that is equivalent to the covering version of the
well-studied and prominent unsplittable flow on a path problem, which is
interesting in its own right. For that covering problem, we present a
quasi-polynomial time -approximation algorithm that yields an
-approximation for the above scheduling problem. Moreover, for
the latter we devise the best possible resource augmentation result regarding
speed: a polynomial time algorithm which computes a solution with \emph{optimal
}cost at speedup. Finally, we present an elegant QPTAS for the
special case where the cost functions of the jobs fall into at most
many classes. This algorithm allows the jobs even to have up to many
distinct release dates.Comment: 2 pages, 1 figur
Gallium Aluminum Arsenide/Gallium Arsenide Integrated Optical Repeater
A low threshold buried heterostructure laser, a metal-semiconductor field effect transistor (MESFET), and a photodiode, have for the first time, been monolithically integrated on a semi-insulating GaAs substrate. This integrated optoelectronic circuit (IOEC) was operated as a rudimentary optical repeater. The incident optical signal is detected by the photodiode, amplified by the MESFET, and converted back to light by the laser. The gain bandwidth product of the repeater was measured to be 178 MHz
AlGaAs lasers with micro-cleaved mirrors suitable for monolithic integration
A technique has been developed for cleaving the mirrors of AlGaAs lasers without cleaving the
substrate. Micro-cleaving involves cleaving a suspended heterostructure cantilever by ultrasonic
vibrations. Lasers with microcleaved mirrors have threshold currents and quantum efficiencies
identical to those of similar devices with conventionally cleaved mirrors
Fast Structuring of Radio Networks for Multi-Message Communications
We introduce collision free layerings as a powerful way to structure radio
networks. These layerings can replace hard-to-compute BFS-trees in many
contexts while having an efficient randomized distributed construction. We
demonstrate their versatility by using them to provide near optimal distributed
algorithms for several multi-message communication primitives.
Designing efficient communication primitives for radio networks has a rich
history that began 25 years ago when Bar-Yehuda et al. introduced fast
randomized algorithms for broadcasting and for constructing BFS-trees. Their
BFS-tree construction time was rounds, where is the network
diameter and is the number of nodes. Since then, the complexity of a
broadcast has been resolved to be rounds. On the other hand, BFS-trees have been used as a crucial building
block for many communication primitives and their construction time remained a
bottleneck for these primitives.
We introduce collision free layerings that can be used in place of BFS-trees
and we give a randomized construction of these layerings that runs in nearly
broadcast time, that is, w.h.p. in rounds for any constant . We then use these
layerings to obtain: (1) A randomized algorithm for gathering messages
running w.h.p. in rounds. (2) A randomized -message
broadcast algorithm running w.h.p. in rounds. These
algorithms are optimal up to the small difference in the additive
poly-logarithmic term between and . Moreover, they imply the
first optimal round randomized gossip algorithm
- …