5,453 research outputs found

    HST/FOS Eclipse mapping of IP Pegasi in outburst

    Full text link
    We report the results of a time-resolved eclipse mapping of the dwarf nova IP Pegasi during the decline of its May 1993 outburst from HST/FOS fast spectroscopy covering 3 eclipses in the ultraviolet spectral range.Comment: 1 page 0 figure

    HST/FOS Time-resolved spectral mapping of IP Pegasi at the end of an outburst

    Full text link
    We report an eclipse mapping analysis of time-resolved ultraviolet spectroscopy covering three eclipses of the dwarf nova IP Pegasi on the late decline of the 1993 May outburst. The eclipse maps of the first run show evidence of one spiral arm, suggesting that spiral structures may still be present in the accretion disc 9 days after the onset of the outburst. In the spatially resolved spectra the most prominent lines appear in emission at any radius, being stronger in the inner disc regions. The spectrum of the gas stream is clearly distinct from the disc spectrum in the intermediate and outer disc regions, suggesting the occurrence of gas stream overflow. The full width half maximum of C IV is approximately constant with radius, in contrast to the expected vR1/2v\propto{R^{-1/2}} law for a gas in Keplerian orbits. This line probably originates in a vertically extended region (chromosphere + disc wind). The uneclipsed component contributes 4\sim{4} % of the flux in C IV in the first run, and becomes negligible in the remaining runs. We fit stellar atmosphere models to the spatially resolved spectra. The radial run of the disc color temperature for the three runs is flatter than the expected TR3/4T\propto{R^{-3/4}} law for steady-state optically thick discs models, with T20000T\simeq{20000} K in the inner regions and T9000T\simeq{9000} K in the outer disc regions. The solid angles that result from the fits are smaller than expected from the parameters of the system. The radial run of the solid angle suggests that the disc is flared in outburst, and decreases in thickness toward the end of the outburst.Comment: 14 pages, 14 figures, in press in Astronomy & Astrophysic

    A spiral structure in the disk of EX Draconis on the rise to outburst maximum

    Full text link
    We report on the R-band eclipse mapping analysis of high-speed photometry of the dwarf nova EX Dra on the rise to the maximum of the November 1995 outburst. The eclipse map shows a one-armed spiral structure of ~180 degrees in azimuth, extending in radius from R ~0.2 to 0.43 R_{L1} (where R_{L1} is the distance from the disk center to the inner Lagrangian point), that contributes about 22 per cent of the total flux of the eclipse map. The spiral structure is stationary in a reference frame co-rotating with the binary and is stable for a timescale of at least 5 binary orbits. The comparison of the eclipse maps on the rise and in quiescence suggests that the outbursts of EX Dra may be driven by episodes of enhanced mass-transfer from the secondary star. Possible explanations for the nature of the spiral structure are discussed.Comment: To appear in the Astrophysical Journal Letters; 8 pages, 2 figures; coded with AAS latex styl
    corecore