216 research outputs found
Compilation and analysis of Mycobacterium paratuberculosis promoters
Mycobacterium paratuberculosis transcriptional and translational signals were studied to gain insight into gene expression in this organism. To study M. paratuberculosis promoter structures, a more versatile promoter selection vector was constructed from the pKO1 parent vector. This new plasmid, pJJ2, was used to identify 11 promoter fragments from an M. paratuberculosis DNA library. In addition, a previously characterized M. paratuberculosis promoter, contained in a 493-bp EcoRI fragment, was cloned into the new vector to test the efficacy in cloning novel M. paratuberculosis promoters. In a related study, an expression probe shuttle plasmid (pYUB76) was employed to clone M. paratuberculosis expression signals that could be studied directly in mycobacteria. Using this vector to identify M. paratuberculosis expression signals, we have determined the nucleotide sequence of ten promoter-containing fragments and have compared these sequences to those of several previously reported Mycobacterium promoters. Hexanucleotide sequences centered approximately 35 and 10 base pairs upstream from the experimentally determined transcription start sites revealed a consensus that is different from E. coli. Compilation of these promoter sequences identified the -35 (T, T/G, G, A/G, G, T) and the -10 (C, A, G, C, C, G) conserved hexanucleotides
No Holes Barred: Invasion of the Intestinal Mucosa by Mycobacterium avium subsp. paratuberculosis
The infection biology of Mycobacterium avium subsp. paratuberculosis has recently crystallized, with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase, and fibronectin attachment proteins have been uncovered. Mutations constructed in this pathogen have also shed light on genes needed for invasion. The host cell types that are susceptible to invasion have been defined, along with their transcriptional response. Recent details have given a new appreciation for the dynamic interplay between the host and bacterium that occurs at the outset of infection. An initial look at the global expression pathways of the host has shown a circumvention of the cell communication pathway by M. avium subsp. paratuberculosis, which loosens the integrity of the tight junctions. We now know that M. avium subsp. paratuberculosis activates the epithelial layer and also actively recruits macrophages to the site of infection. These notable findings are summarized along with added mechanistic details of the early infection model. We conclude by pro- posing critical next steps to further elucidate the process of M. avium subsp. paratuberculosis invasion
Killing of Mycobacterium avium subspecies paratuberculosis within macrophages
BACKGROUND: Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a facultative intracellular pathogen that resides within host macrophages during infection of ruminant animals. We examined survival of M. paratuberculosis infections within cultured macrophages to better understand the interplay between bacterium and host. RESULTS: Serial plating of M. paratuberculosis infected macrophage lysates on Herold's egg yolk medium showed that mycobacterial replication takes place between 0 and 24 hours post-infection. This initial growth phase was followed by a steady decline in viability over the next six days. Antibodies against M. paratuberculosis were affinity purified and used in conjunction with transmission electron microscopy to track the development of intracellular bacilli. Immunogold labeling of infected macrophages with antibody against M. paratuberculosis showed degraded intracellular mycobacteria that were unrecognizable by morphology alone. Conversely, when macrophages were heavily infected with M. paratuberculosis, no degraded forms were observed and macrophages were killed. CONCLUSIONS: We present a general description of M. paratuberculosis survival within cultured macrophages using transmission electron microscopy and viability counts. The results of this study provides further insight surrounding M. paratuberculosis-macrophage infections and have implications in the pathogenesis of M. paratuberculosis, a pathogen known to persist inside cattle for many years
Membrane and Cytoplasmic Proteins of Mycobacterium avium subspecies paratuberculosis that Bind to Novel Monoclonal Antibodies
Monoclonal antibodies against Mycobacterium avium subspecies paratuberculosis (Map) proteins are important tools in Johne’s disease research and diagnostics. Johne’s disease is a chronic inflammatory intestinal disease of cattle, sheep, and other ruminant animals. We have previously generated multiple sets of monoclonal antibodies (mAbs) in different studies; however, because many were generated and screened against a whole-cell extract of Map, the antigens that bind to these antibodies remained unknown. In this study, we used three different approaches to identify the corresponding Map antigens for 14 mAbs that could not be identified previously. In the first approach, a new Map-lambda phage expression library was screened to identify corresponding antigens for 11 mAbs. This approach revealed that mAbs 7C8, 9H3, 12E4, 3G5, and 11B8 all detect MAP_3404 encoding the biotin carboxylase subunit of acetyl-CoA carboxylase, while mAbs 7A6, 11F8, and 10C12 detect the GroEL2 chaperonin (MAP_3936), 6C9 detects electron transfer flavoprotein (MAP_3060c), and 14G11 detects MAP_3976, a lipoprotein anchoring transpeptidase. The epitopes to a selection of these mAbs were also defined. In a second approach, MAP_2698c bound monoclonal antibody (mAb) 14D4 as determined using protein arrays. When both of these approaches failed to identify the antigen for mAb 12C9, immunoprecipitation, mass spectrometry analysis, and codon optimization was used to identify the membrane protein, MAP_4145, as the reacting antigen. Characterized antibodies were used to quickly interrogate mycobacterial proteomic preps. We conclude by providing a complete catalog of available mAbs to Map proteins, along with their cognate antigens and epitopes, if known. These antibodies are now thoroughly characterized and more useful for research and diagnostic purposes
Disparate Host Immunity to Mycobacterium avium subsp. paratuberculosis Antigens in Calves Inoculated with M. avium subsp. paratuberculosis, M. avium subsp. avium, M. kansasii, and M. bovis
The cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and a criticism of the current tests that are used for the detection of paratuberculosis. In the present study, Mycobacterium avium subsp. paratu- berculosis recombinant proteins were evaluated for antigenic specificity compared to a whole-cell sonicate preparation (MPS). Measures of cell-mediated immunity to M. avium subsp. paratuberculosis antigens were compared in calves inoculated with live M. avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), Mycobacterium kansasii, or Mycobacterium bovis. Gamma interferon (IFN-) responses to MPS were observed in all calves that were exposed to mycobacteria compared to control calves at 4 months postinfection. Pooled recombinant M. avium subsp. paratuberculosis proteins also elicited nonspecific IFN- responses in inoculated calves, with the exception of calves infected with M. bovis. M. avium subsp. paratuberculosis proteins failed to elicit antigen-specific responses for the majority of immune measures; however, the expression of CD25 and CD26 was upregulated on CD4, CD8, gamma/delta () T, and B cells for the calves that were inoculated with either M. avium subsp. para- tuberculosis or M. avium after antigen stimulation of the cells. Stimulation with MPS also resulted in the increased expression of CD26 on CD45RO CD25 T cells from calves inoculated with M. avium subsp. paratuberculosis and M. avium. Although re- combinant proteins failed to elicit specific responses for the calves inoculated with M. avium subsp. paratuberculosis, the differ- ences in immune responses to M. avium subsp. paratuberculosis antigens were dependent upon mycobacterial exposure. The results demonstrated a close alignment in immune responses between calves inoculated with M. avium subsp. paratuberculosis and those inoculated with M. avium that were somewhat disparate from the responses in calves infected with M. bovis, suggesting that the biology of mycobacterial infection plays an important role in diagnosis
Application of the Biosafety RAM and eProtocol Software Programs to Streamline Institutional Biosafety Committee Processes at the USDA-National Animal Disease Center
The National Animal Disease Center (NADC) conducts basic and applied research on endemic animal diseases of high priority that adversely affect US livestock production or trade. Experiments conducted at this center vary in range and scope with a subset involving synthetic or recombinant nucleic acids (DNA), microorganisms, and/or animals. Historically, the NADC used hard copy paper and filing systems to catalog and monitor these types of experiments, but to improve communication, tracking, searching, reporting, and documentation of Institutional Biosafety Committee (IBC) actions, this institution has transitioned to using a commercially available software tool to digitally manage protocols in our ongoing efforts to maintain excellence in regulatory compliance. In addition, similar to many other research institutions and universities, the scope of the IBC has expanded to include risk assessments on all work conducted at the center. This process has been streamlined using the Biosafety RAM open source software, developed by Sandia National Laboratories, and has stimulated productive discussions on best practices to safely conduct animal and microbiological experiments at the center. Although some initial challenges arose, successful implementation of these two software tools at the NADC has simplified the management of IBC compliance requirements and facilitated review processes at a high-containment government research facility
Immunoreactivity of the Mycobacterium avium subsp. paratuberculosis 19-kDa lipoprotein
BACKGROUND: The Mycobacterium tuberculosis 19-kDa lipoprotein has been reported to stimulate both T and B cell responses as well as induce a number of Th1 cytokines. In order to evaluate the Mycobacterium avium subsp. paratuberculosis (M. avium subsp. paratuberculosis) 19-kDa lipoprotein as an immunomodulator in cattle with Johne's disease, the gene encoding the 19-kDa protein (MAP0261c) was analyzed. RESULTS: MAP0261c is conserved in mycobacteria, showing a 95% amino acid identity in M. avium subspecies avium, 84% in M. intracellulare and 76% in M. bovis and M. tuberculosis. MAP0261c was cloned, expressed, and purified as a fusion protein with the maltose-binding protein (MBP-19 kDa) in Escherichia coli. IFN-γ production was measured from 21 naturally infected and 9 control cattle after peripheral blood mononuclear cells (PBMCs) were stimulated with a whole cell lysate (WCL) of M. avium subsp. paratuberculosis or the recombinant MBP-19 kDa. Overall, the mean response to MBP-19 kDa was not as strong as the mean response to the WCL. By comparison, cells from control, non-infected cattle did not produce IFN-γ after stimulation with either WCL or MBP-19 kDa. To assess the humoral immune response to the 19-kDa protein, sera from cattle with clinical Johne's disease were used in immunoblot analysis. Reactivity to MBP-19 kDa protein, but not MBP alone, was observed in 9 of 14 infected cattle. Antibodies to the 19-kDa protein were not observed in 8 of 9 control cows. CONCLUSIONS: Collectively, these results demonstrate that while the 19-kDa protein from M. avium subsp. paratuberculosis stimulates a humoral immune response and weak IFN-γ production in infected cattle, the elicited responses are not strong enough to be used in a sensitive diagnostic assay
Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates
BACKGROUND: Mycobacterium avium subspecies avium (M. avium) is frequently encountered in the environment, but also causes infections in animals and immunocompromised patients. In contrast, Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a slow-growing organism that is the causative agent of Johne's disease in cattle and chronic granulomatous infections in a variety of other ruminant hosts. Yet we show that despite their divergent phenotypes and the diseases they present, the genomes of M. avium and M. paratuberculosis share greater than 97% nucleotide identity over large (25 kb) genomic regions analyzed in this study. RESULTS: To characterize genome similarity between these two subspecies as well as attempt to understand their different growth rates, we designed oligonucleotide primers from M. avium sequence to amplify 15 minimally overlapping fragments of M. paratuberculosis genomic DNA encompassing the chromosomal origin of replication. These strategies resulted in the successful amplification and sequencing of a contiguous 11-kb fragment containing the putative Mycobacterium paratuberculosis origin of replication (oriC). This fragment contained 11 predicted open reading frames that showed a conserved gene order in the oriC locus when compared with several other Gram-positive bacteria. In addition, a GC skew analysis identified the origin of chromosomal replication which lies between the genes dnaA and dnaN. The presence of multiple DnaA boxes and the ATP-binding site in dnaA were also found in M. paratuberculosis. The strong nucleotide identity of M. avium and M. paratuberculosis in the region surrounding the origin of chromosomal replication led us to compare other areas of these genomes. A DNA homology matrix of 2 million nucleotides from each genome revealed strong synteny with only a few sequences present in one genome but absent in the other. Finally, the 16s rRNA gene from these two subspecies is 100% identical. CONCLUSIONS: We present for the first time, a description of the oriC region in M. paratuberculosis. In addition, genomic comparisons between these two mycobacterial subspecies suggest that differences in the oriC region may not be significant enough to account for the diverse bacterial replication rates. Finally, the few genetic differences present outside the origin of chromosomal replication in each genome may be responsible for the diverse growth rates or phenotypes observed between the avium and paratuberculosis subspecies
Genome Scale Comparison of Mycobacterium avium subsp. paratuberculosis with Mycobacterium avium subsp. avium Reveals Potential Diagnostic Sequences
The genetic similarity between Mycobacterium avium subsp. paratuberculosis and other mycobacterial species has confounded the development of M. avium subsp. paratuberculosis-specific diagnostic reagents. Random shotgun sequencing of the M. avium subsp. paratuberculosis genome in our laboratories has shown \u3e98% sequence identity with Mycobacterium avium subsp. avium in some regions. However, an in silico comparison of the largest annotated M. avium subsp. paratuberculosis contigs, totaling 2,658,271 bp, with the unfinished M. avium subsp. avium genome has revealed 27 predicted M. avium subsp. paratuberculosis coding sequences that do not align with M. avium subsp. avium sequences. BLASTP analysis of the 27 predicted coding sequences (genes) shows that 24 do not match sequences in public sequence databases, such as GenBank. These novel sequences were examined by PCR amplification with genomic DNA from eight mycobacterial species and ten independent isolates of M. avium subsp. paratuberculosis. From these analyses, 21 genes were found to be present in all M. avium subsp. paratuberculosis isolates and absent from all other mycobacterial species tested. One region of the M. avium subsp. paratuberculosis genome contains a cluster of eight genes, arranged in tandem, that is absent in other mycobacterial species. This region spans 4.4 kb and is separated from other predicted coding regions by 1,408 bp upstream and 1,092 bp downstream. The gene upstream of this eight-gene cluster has strong similarity to mycobacteriophage integrase sequences. The GC content of this 4.4-kb region is 66%, which is similar to the rest of the genome, indicating that this region was not horizontally acquired recently. Southern hybridization analysis confirmed that this gene cluster is present only in M. avium subsp. paratuberculosis. Collectively, these studies suggest that a genomics approach will help in identifying novel M. avium subsp. paratuberculosis genes as candidate diagnostic sequences
Induction of B Cell Responses upon Experimental Infection of Neonatal Calves with Mycobacterium avium subsp. paratuberculosis
The objective of this study was to determine if experimental infection of neonatal calves with Mycobacterium avium subsp. paratuberculosis would invoke changes in the percentages of total B cells in the peripheral blood mononuclear cell population and of subpopulations of B cells as determined by CD5, CD25, and CD45RO markers during a 12-month period. Experimental infection groups included control (noninfected), oral (infected with M. avium subsp. paratuberculosis strain K-10), oral/DXM (pretreatment with dexamethasone before oral inoculation), i.p. (intraperitoneal inoculation), and oral/M (oral inoculation with mucosal scrapings from a cow with clinical disease) groups. Over the course of the study, the percentages of total B cells in nonstimulated and antigen-stimulated cell cultures increased for oral and i.p. group calves, with the highest percentages noted at 3 and 6 months. Oral/M group calves had increased percentages of activated B cells, as determined by CD5dim and CD5bright markers, at 9 and 12 months. Experimental infection by all methods resulted in increased expression of CD25 and CD45RO B cells early in the study, but the most significant results were observed at 12 months for oral/DXM and oral/M group calves. Immunoblot analyses with a whole-cell sonicate of M. avium subsp. paratuberculosis demonstrated the most reactivity with sera from i.p. group calves and the least reactivity with sera from oral group calves. Further evidence of M. avium subsp. paratuberculosis-specific antibody responses in the i.p. group calves was demonstrated using the ethanol vortex enzyme-linked immunosorbent assay (EvELISA) method. In summary, an induction of B cell responses was noted after experimental infection with M. avium subsp. paratuberculosis, with differences in responses noted according to the method of experimental inoculation
- …