27 research outputs found

    Enhancer of zeste plays an important role in photoperiodic modulation of locomotor rhythm in the cricket, Gryllus bimaculatus

    Get PDF
    Introduction: Insects show daily behavioral rhythms controlled by an endogenous oscillator, the circadian clock. The rhythm synchronizes to daily light–dark cycles (LD) and changes waveform in association with seasonal change in photoperiod. Results: To explore the molecular basis of the photoperiod-dependent changes in circadian locomotor rhythm, we investigated the role of a chromatin modifier, Enhancer of zeste (Gb’E(z)), in the cricket, Gryllus bimaculatus. Under a 12 h:12 h LD (LD 12:12), Gb’E(z) was constitutively expressed in the optic lobe, the site of the biological clock; active phase (α) and rest phase (ρ) were approximately 12 h in duration, and α/ρ ratio was approximately 1.0. When transferred to LD 20:4, the α/ρ ratio decreased significantly, and the Gb’E(z) expression level was significantly reduced at 6 h and 10 h after light-on, as was reflected in the reduced level of trimethylation of histone H3 lysine 27. This change was associated with change in clock gene expression profiles. The photoperiod-dependent changes in α/ρ ratio and clock gene expression profiles were prevented by knocking down Gb’E(z) by RNAi. Conclusions: These results suggest that histone modification by Gb’E(z) is involved in photoperiodic modulation of the G. bimaculatus circadian rhythm

    Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus

    Get PDF
    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression

    Activity and stability of recombinant human superoxide dismutase in buffer solutions and hypothermic perfusates.

    Get PDF
    The stability of recombinant human superoxide dismutase (r-hSOD) in buffer solutions was studied in solutions at various pH and temperatures. Additionally, we studied the effects of incubation with proteases, serum and two types of hypothermic perfusates. R-hSOD was stable in the pH range of 6-11 and at temperatures up to 80 degrees C for 30 min. R-hSOD activity was not affected by incubation with trypsin, aminopeptidase M or serum for 2 h. R-hSOD activity determined at various temperatures (4-37 degrees C) did not vary remarkably. R-hSOD in hypothermic perfusates was stable at 4-37 degrees C for 24 h.</p

    Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus

    Get PDF
    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression

    Superconductivity competing with the incommensurate antiferromagnetic insulating state in the organic conductor (MDT-TS)(AuI2)0.441

    Get PDF
    The organic conductor (MDT-TS)(AuI2)0.441 undergoes a metal-insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene. The static magnetic susceptibility demonstrates an antiferromagnetic ordering below this temperature. Hydrostatic pressure suppresses this insulating state, and a superconductivity appears at Tc=3.2 K above 10.5 kbar. The phase diagram demonstrates a transition from the incommensurate antiferromagnetic insulating state to a superconducting state in an organic conductor with a noninteger carrier number

    Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages

    No full text
    Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway
    corecore