2,158 research outputs found
Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems
The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and
classified into four multiparametric families. Their quantum deformations are
obtained, together with the corresponding deformed Casimir operators. For the
coboundary cases quantum universal R-matrices are also given. Applications of
the quantum extended Galilei algebras to classical integrable systems are
explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of
integrable systems is carried ou
Non-coboundary Poisson-Lie structures on the book group
All possible Poisson-Lie (PL) structures on the 3D real Lie group generated
by a dilation and two commuting translations are obtained. Its classification
is fully performed by relating these PL groups with the corresponding Lie
bialgebra structures on the corresponding "book" Lie algebra. By construction,
all these Poisson structures are quadratic Poisson-Hopf algebras for which the
group multiplication is a Poisson map. In contrast to the case of simple Lie
groups, it turns out that most of the PL structures on the book group are
non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most
interesting PL book structures are just some of these non-coboundaries, which
are explicitly analysed. In particular, we show that the two different
q-deformed Poisson versions of the sl(2,R) algebra appear as two distinguished
cases in this classification, as well as the quadratic Poisson structure that
underlies the integrability of a large class of 3D Lotka-Volterra equations.
Finally, the quantization problem for these PL groups is sketched.Comment: 15 pages, revised version, some references adde
A Jordanian quantum two-photon/Schrodinger algebra
A non-standard quantum deformation of the two-photon algebra is
constructed, and its quantum universal R-matrix is given. Representations of
this new quantum algebra are studied on the Fock space and translated into
Fock-Bargmann realizations that provide a direct formalism for the definition
of deformed states of light. Finally, the isomorphism between and the
(1+1) Schr\"odinger algebra is used to introduce a new (non-standard) Hopf
algebra deformation of this latter symmetry algebra.Comment: 12 pages, LaTeX, misprints correcte
New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces
A generalized version of Bertrand's theorem on spherically symmetric curved
spaces is presented. This result is based on the classification of
(3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two
families of Hamiltonian systems defined on certain 3-dimensional (Riemannian)
spaces. These two systems are shown to be either the Kepler or the oscillator
potentials on the corresponding Bertrand spaces, and both of them are maximally
superintegrable. Afterwards, the relationship between such Bertrand
Hamiltonians and position-dependent mass systems is explicitly established.
These results are illustrated through the example of a superintegrable
(nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and
physical features are also briefly addressed.Comment: 13 pages; based in the contribution to the 28th International
Colloquium on Group Theoretical Methods in Physics, Northumbria University
(U.K.), 26-30th July 201
On the Universality Class of Monopole Percolation in Scalar QED
We study the critical properties of the monopole-percolation transition in
U(1) lattice gauge theory coupled to scalars at infinite () gauge
coupling. We find strong scaling corrections in the critical exponents that
must be considered by means of an infinite-volume extrapolation. After the
extrapolation, our results are as precise as the obtained for the four
dimensional site-percolation and, contrary to previously stated, fully
compatible with them.Comment: 11 pages, 3 figure
Bases in Lie and Quantum Algebras
Applications of algebras in physics are related to the connection of
measurable observables to relevant elements of the algebras, usually the
generators. However, in the determination of the generators in Lie algebras
there is place for some arbitrary conventions. The situation is much more
involved in the context of quantum algebras, where inside the quantum universal
enveloping algebra, we have not enough primitive elements that allow for a
privileged set of generators and all basic sets are equivalent. In this paper
we discuss how the Drinfeld double structure underlying every simple Lie
bialgebra characterizes uniquely a particular basis without any freedom,
completing the Cartan program on simple algebras. By means of a perturbative
construction, a distinguished deformed basis (we call it the analytical basis)
is obtained for every quantum group as the analytical prolongation of the above
defined Lie basis of the corresponding Lie bialgebra. It turns out that the
whole construction is unique, so to each quantum universal enveloping algebra
is associated one and only one bialgebra. In this way the problem of the
classification of quantum algebras is moved to the classification of
bialgebras. In order to make this procedure more clear, we discuss in detail
the simple cases of su(2) and su_q(2).Comment: 16 pages, Proceedings of the 5th International Symposium on Quantum
Theory and Symmetries QTS5 (July 22-28, 2007, Valladolid (Spain)
Finite Size Scaling and ``perfect'' actions: the three dimensional Ising model
Using Finite-Size Scaling techniques, we numerically show that the first
irrelevant operator of the lattice theory in three dimensions
is (within errors) completely decoupled at . This interesting
result also holds in the Thermodynamical Limit, where the renormalized coupling
constant shows an extraordinary reduction of the scaling-corrections when
compared with the Ising model. It is argued that Finite-Size Scaling analysis
can be a competitive method for finding improved actions.Comment: 13 pages, 3 figure
Classical Lie algebras and Drinfeld doubles
The Drinfeld double structure underlying the Cartan series An, Bn, Cn, Dn of
simple Lie algebras is discussed.
This structure is determined by two disjoint solvable subalgebras matched by
a pairing. For the two nilpotent positive and negative root subalgebras the
pairing is natural and in the Cartan subalgebra is defined with the help of a
central extension of the algebra.
A new completely determined basis is found from the compatibility conditions
in the double and a different perspective for quantization is presented. Other
related Drinfeld doubles on C are also considered.Comment: 11 pages. submitted for publication to J. Physics
Critical exponents and unusual properties of the broken phase in the 3d-RP(2) antiferromagnetic model
We present the results of a Monte Carlo simulation of the antiferromagnetic
RP(2) model in three dimensions. With finite-size scaling techniques we
accurately measure the critical exponents and compare them with those of O(N)
models. We are able to parameterize the corrections-to-scaling. The symmetry
properties of the broken phase are also studied.Comment: 4 pages, TeX type, Poster session contribution to "Lattice96"
conference, Washington University, StLoui
Binary trees, coproducts, and integrable systems
We provide a unified framework for the treatment of special integrable
systems which we propose to call "generalized mean field systems". Thereby
previous results on integrable classical and quantum systems are generalized.
Following Ballesteros and Ragnisco, the framework consists of a unital algebra
with brackets, a Casimir element, and a coproduct which can be lifted to higher
tensor products. The coupling scheme of the iterated tensor product is encoded
in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new
appendices adde
- âŠ