2,158 research outputs found

    Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems

    Full text link
    The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and classified into four multiparametric families. Their quantum deformations are obtained, together with the corresponding deformed Casimir operators. For the coboundary cases quantum universal R-matrices are also given. Applications of the quantum extended Galilei algebras to classical integrable systems are explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of integrable systems is carried ou

    Non-coboundary Poisson-Lie structures on the book group

    Full text link
    All possible Poisson-Lie (PL) structures on the 3D real Lie group generated by a dilation and two commuting translations are obtained. Its classification is fully performed by relating these PL groups with the corresponding Lie bialgebra structures on the corresponding "book" Lie algebra. By construction, all these Poisson structures are quadratic Poisson-Hopf algebras for which the group multiplication is a Poisson map. In contrast to the case of simple Lie groups, it turns out that most of the PL structures on the book group are non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most interesting PL book structures are just some of these non-coboundaries, which are explicitly analysed. In particular, we show that the two different q-deformed Poisson versions of the sl(2,R) algebra appear as two distinguished cases in this classification, as well as the quadratic Poisson structure that underlies the integrability of a large class of 3D Lotka-Volterra equations. Finally, the quantization problem for these PL groups is sketched.Comment: 15 pages, revised version, some references adde

    A Jordanian quantum two-photon/Schrodinger algebra

    Get PDF
    A non-standard quantum deformation of the two-photon algebra h6h_6 is constructed, and its quantum universal R-matrix is given. Representations of this new quantum algebra are studied on the Fock space and translated into Fock-Bargmann realizations that provide a direct formalism for the definition of deformed states of light. Finally, the isomorphism between h6h_6 and the (1+1) Schr\"odinger algebra is used to introduce a new (non-standard) Hopf algebra deformation of this latter symmetry algebra.Comment: 12 pages, LaTeX, misprints correcte

    New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces

    Full text link
    A generalized version of Bertrand's theorem on spherically symmetric curved spaces is presented. This result is based on the classification of (3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two families of Hamiltonian systems defined on certain 3-dimensional (Riemannian) spaces. These two systems are shown to be either the Kepler or the oscillator potentials on the corresponding Bertrand spaces, and both of them are maximally superintegrable. Afterwards, the relationship between such Bertrand Hamiltonians and position-dependent mass systems is explicitly established. These results are illustrated through the example of a superintegrable (nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and physical features are also briefly addressed.Comment: 13 pages; based in the contribution to the 28th International Colloquium on Group Theoretical Methods in Physics, Northumbria University (U.K.), 26-30th July 201

    On the Universality Class of Monopole Percolation in Scalar QED

    Get PDF
    We study the critical properties of the monopole-percolation transition in U(1) lattice gauge theory coupled to scalars at infinite (ÎČ=0\beta=0) gauge coupling. We find strong scaling corrections in the critical exponents that must be considered by means of an infinite-volume extrapolation. After the extrapolation, our results are as precise as the obtained for the four dimensional site-percolation and, contrary to previously stated, fully compatible with them.Comment: 11 pages, 3 figure

    Bases in Lie and Quantum Algebras

    Full text link
    Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su_q(2).Comment: 16 pages, Proceedings of the 5th International Symposium on Quantum Theory and Symmetries QTS5 (July 22-28, 2007, Valladolid (Spain)

    Finite Size Scaling and ``perfect'' actions: the three dimensional Ising model

    Get PDF
    Using Finite-Size Scaling techniques, we numerically show that the first irrelevant operator of the lattice λϕ4\lambda\phi^4 theory in three dimensions is (within errors) completely decoupled at λ=1.0\lambda=1.0. This interesting result also holds in the Thermodynamical Limit, where the renormalized coupling constant shows an extraordinary reduction of the scaling-corrections when compared with the Ising model. It is argued that Finite-Size Scaling analysis can be a competitive method for finding improved actions.Comment: 13 pages, 3 figure

    Classical Lie algebras and Drinfeld doubles

    Full text link
    The Drinfeld double structure underlying the Cartan series An, Bn, Cn, Dn of simple Lie algebras is discussed. This structure is determined by two disjoint solvable subalgebras matched by a pairing. For the two nilpotent positive and negative root subalgebras the pairing is natural and in the Cartan subalgebra is defined with the help of a central extension of the algebra. A new completely determined basis is found from the compatibility conditions in the double and a different perspective for quantization is presented. Other related Drinfeld doubles on C are also considered.Comment: 11 pages. submitted for publication to J. Physics

    Critical exponents and unusual properties of the broken phase in the 3d-RP(2) antiferromagnetic model

    Get PDF
    We present the results of a Monte Carlo simulation of the antiferromagnetic RP(2) model in three dimensions. With finite-size scaling techniques we accurately measure the critical exponents and compare them with those of O(N) models. We are able to parameterize the corrections-to-scaling. The symmetry properties of the broken phase are also studied.Comment: 4 pages, TeX type, Poster session contribution to "Lattice96" conference, Washington University, StLoui

    Binary trees, coproducts, and integrable systems

    Get PDF
    We provide a unified framework for the treatment of special integrable systems which we propose to call "generalized mean field systems". Thereby previous results on integrable classical and quantum systems are generalized. Following Ballesteros and Ragnisco, the framework consists of a unital algebra with brackets, a Casimir element, and a coproduct which can be lifted to higher tensor products. The coupling scheme of the iterated tensor product is encoded in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new appendices adde
    • 

    corecore