136 research outputs found

    NRSM 281.01: Science of Climate Change

    Get PDF

    NSRM 491.02: Ecosystem Climatology

    Get PDF

    CCS 295.01: Science of Climate Change

    Get PDF

    GPHY 111N.01: Introduction to Physical Geography: Climate, Landforms, and Vegetation

    Get PDF

    Apparent Seasonal Cycle in Isotopic Discrimination of Carbon in the Atmosphere and Biosphere Due to Vapor Pressure Deficit

    Get PDF
    We explore seasonal variability in isotopic fractionation by analyzing observational data from the atmosphere and the biosphere, as well as simulated data from a global model. Using simulated values of atmospheric CO2 and its carbon isotopic composition, we evaluated different methods for specifying background concentrations when calculating the isotopic signature of source CO2 (δs) to the atmosphere. Based on this evaluation, we determined that free troposphere measurements should be used when available as a background reference when calculating δs from boundary layer observations. We then estimate the seasonal distribution of δs from monthly climatologies derived from several atmospheric sampling sites. This approach yields significant seasonal variations in δs with more enriched values during the summer months that exceed the uncertainty of δs estimated for any given month. Intra-annual measurements of δ13C in the cellulose of Pinus taeda growing in the southeastern U.S. also reveal seasonal isotopic variations that are consistent in phase but not necessarily amplitude with atmospherically derived estimates of δs. Coherent seasonal patterns in δs inferred from the atmosphere and observed in the biosphere were not consistent with the seasonal isotopic discrimination simulated by a commonly used biosphere model. However, δs seasonality consistent with observations from the atmosphere and biosphere was retrieved with a revised biosphere model when stomatal conductance, and thus isotopic discrimination, was allowed to vary in response to vapor pressure deficit rather than relative humidity. Therefore, in regions where vapor pressure deficit and relative humidity are positively covariant over the growth season, such as the sub-tropics, different stomatal conductance models may yield very different estimates of CO2 and H2O exchange between the biosphere and atmosphere

    Increasing Ca2+ Deposition in the Western US: The Role of Mineral Aerosols

    Get PDF
    Considerable research has focused on the role of industrial emissions in controlling the acidity of precipitation; however, much less research has focused on the role of mineral aerosols emitted from soils. According to data published by the National Atmospheric Deposition Network (NADP), over the past 17 years Ca2+ deposition has increased over large regions of the US. A trend analysis to determine regions of significant change in Ca2+ deposition revealed statistically significant increases in three broad regions within the western half of the country: the inter-mountain west, the midwest, and the northwest. We evaluated potential changes in sources of calcium to the atmosphere including soil erosion, industrial emissions, forest fires, and sea-salt aerosols to determine the cause of rising atmospheric calcium deposition. Based on our evaluation, the most parsimonious explanation for increased Ca2+ deposition is an increase in mineral aerosol emissions from within the western US. This explanation is corroborated by independent evidence showing increases in the frequency of dust storms and low-visibility days across regions of the western US. Furthermore, our analysis indicates that the increase in mineral aerosol emissions is most likely due to (1) increased aridity and wind transport and (2) increased area and intensity of upwind human activities. Changes in atmospheric dust concentrations can have important ecological implications through the contribution of acid neutralizing capacity to both precipitation and regions of deposition. Thus increased dust emissions have the potential to ameliorate the detrimental effects of acid precipitation on terrestrial ecosystems, though dust may exacerbate the impacts of air quality on human health

    Climate-Mediated Nitrogen and Carbon Dynamics in a Tropical Watershed

    Get PDF
    Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4–12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions

    Regional Differences in South American Monsoon Precipitation Inferred from the Growth and Isotopic Composition of Tropical Trees

    Get PDF
    The authors present results on the relationship between tree-ring proxies and regional precipitation for several sites in tropical South America. The responsiveness of oxygen isotopes (δ18O) and seasonal growth as precipitation proxies was first validated by high-resolution sampling of a Tachigali myrmecophila from Manaus, Brazil (3.1°S, 60.0°W). Monthly growth of Tachigali spp. was significantly correlated with monthly precipitation. Intra-annual measurements of cellulose δ18O in Tachigali spp. were also significantly correlated with monthly precipitation at a lag of approximately one month. The annual ring widths of two tropical tree taxa, Cedrela odorata growing in the Amazon (12.6°S, 69.2°W) and Polylepis tarapacana growing in the Altiplano (22.0°S, 66.0°W), were validated using bomb-derived radiocarbon 14C. Estimated dates were within two to three years of bomb-inferred 14C dates, indicating that these species exhibit annual rings but uncertainties in our chronologies remain. A multiproxy record spanning 180 years from Cedrela spp. showed a significant negative relationship between cellulose δ18O and January precipitation. A 150-yr record obtained from Polylepis spp. also showed a significant negative relationship between δ18O and March precipitation, whereas annual ring width showed a significant positive correlation with December precipitation. These proxies were combined in a multivariate framework to reconstruct past precipitation, revealing a significant increase in monsoon precipitation at the Amazon site since 1890 and a significant decrease in monsoon precipitation at the Altiplano since 1880. Proxy time series also showed spatial and temporal coherence with precipitation variability due to El Niño forcing, suggesting that oxygen isotopes and ring widths in tropical trees may be important diagnostics for identifying regional differences in the response of the tropical hydrologic cycle to anthropogenic warming

    Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs

    Get PDF
    For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications
    • …
    corecore