1,250 research outputs found

    The half-metallic ferromagnet Co2Mn0.5Fe0.5Si

    Full text link
    Electronic structure calculation were used to predict a new material for spintronic applications. Co2Mn0.5Fe0.5Si is one example which is stable against on-site correlation and disorder effects due to the position of the Fermi energy in the middle of the minority band gap. Experimentally the sample were made exhibiting L21 structure and a high magnetic order.Comment: 5 pages, 2 Figures, J. Magn. Magn. Mater. accepte

    How Important Is A Postdoc For A Teaching Career?

    Get PDF

    Hall effect in laser ablated Co_2(Mn,Fe)Si thin films

    Full text link
    Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction shows for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).Comment: 9 pages, 6 figures submitted to J Phys

    Properties of the quaternary half-metal-type Heusler alloy Co2_2Mn1x_{1-x}Fex_xSi

    Full text link
    This work reports on the bulk properties of the quaternary Heusler alloy Co2_2Mn1x_{1-x}Fex_xSi with the Fe concentration x=x=. All samples, which were prepared by arc melting, exhibit L21L2_1 long range order over the complete range of Fe concentration. Structural and magnetic properties of Co2_2Mn1x_{1-x}Fex_xSi Heusler alloys were investigated by means of X-ray diffraction, high and low temperature magnetometry, M{\"o\ss}bauer spectroscopy, and differential scanning calorimetry. The electronic structure was explored by means of high energy photo emission spectroscopy at about 8 keV photon energy. This ensures true bulk sensitivity of the measurements. The magnetization of the Fe doped Heusler alloys is in agreement with the values of the magnetic moments expected for a Slater-Pauling like behavior of half-metallic ferromagnets. The experimental findings are discussed on the hand of self-consistent calculations of the electronic and magnetic structure. To achieve good agreement with experiment, the calculations indicate that on-site electron-electron correlation must be taken into account, even at low Fe concentration. The present investigation focuses on searching for the quaternary compound where the half-metallic behavior is stable against outside influences. Overall, the results suggest that the best candidate may be found at an iron concentration of about 50%.Comment: 26 pages, 9 figures Phys. Rev. B accepte

    Designed to Fail: Why Most Commonly Used Designs Will Fail and How to Fix Them

    Get PDF
    https://digitalcommons.usm.maine.edu/cbep-presentations/1069/thumbnail.jp

    Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn

    Full text link
    In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetoresistances of the manganites. The Seebeck coefficients are negative for all three compounds and reach their maximum values at their respective Curie temperatures and stay almost constant up to 950 K. The highest value achieved is -52muV/K m for Co2TiSn which is large for a metal. The combination of half-metallicity and the constant large Seebeck coefficient over a wide temperature range makes these compounds interesting materials for thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure

    Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy

    Full text link
    The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co2_2MnSi a value of 93%\% for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study includes experimental investigations, where the bulk electronic structure as well as surface-related features have been investigated using spin-resolved photoelectron spectroscopy (SR-UPS) and for a larger probing depth spin-integrated high energy x-ray photoemission spectroscopy (HAXPES). The results are interpreted in comparison with first-principles band structure and photoemission calculations which consider all relativistic, surface and high-energy effects properly.Comment: 9 pages, 8 figures, Heusler alloy, electronic structure and photoemissio
    corecore