18 research outputs found
Enhancing the tensor-to-scalar ratio in simple inflation
We show that in theories with a nontrivial kinetic term the contribution of
the gravitational waves to the CMB fluctuations can be substantially larger
than that is naively expected in simple inflationary models. This increase of
the tensor-to-scalar perturbation ratio leads to a larger B-component of the
CMB polarization, thus making the prospects for future detection much more
promising. The other important consequence of the considered model is a higher
energy scale of inflation and hence higher reheating temperature compared to a
simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly
extended, published versio
Algebraic expansions for curvature coupled scalar field models
A late time asymptotic perturbative analysis of curvature coupled complex
scalar field models with accelerated cosmological expansion is carried out on
the level of formal power series expansions. For this, algebraic analogues of
the Einstein scalar field equations in Gaussian coordinates for space-time
dimensions greater than two are postulated and formal solutions are constructed
inductively and shown to be unique. The results obtained this way are found to
be consistent with already known facts on the asymptotics of such models. In
addition, the algebraic expansions are used to provide a prospect of the large
time behaviour that might be expected of the considered models.Comment: 16 pages, no figures; v2: typos corrected, references adde
Planck 2015 results. XVI. Isotropy and statistics of the CMB
We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date
Planck 2015 results. XIV. Dark energy and modified gravity
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations are in agreement with LCDM. When testing models that also change perturbations (even when the background is fixed to LCDM), some tensions appear in a few scenarios: the maximum one found is \sim 2 sigma for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to at most 3 sigma when external data sets are included. It however disappears when including CMB lensing
Recommended from our members
Euclid. I. Overview of the Euclid mission
The current standard model of cosmology successfully describes a variety ofmeasurements, but the nature of its main ingredients, dark matter and darkenergy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision2015-2025 programme of the European Space Agency (ESA) that will providehigh-resolution optical imaging, as well as near-infrared imaging andspectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition toaccurate weak lensing and clustering measurements that probe structureformation over half of the age of the Universe, its primary probes forcosmology, these exquisite data will enable a wide range of science. This paperprovides a high-level overview of the mission, summarising the surveycharacteristics, the various data-processing steps, and data products. We alsohighlight the main science objectives and expected performance
Euclid. I. Overview of the Euclid mission
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
Euclid. I. Overview of the Euclid mission
International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
Euclid. I. Overview of the Euclid mission
International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
Euclid. I. Overview of the Euclid mission
International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance