45,806 research outputs found

    Travelling gradients in interacting morphogen systems

    Get PDF
    Morphogen gradients are well known to play several important roles in development; however the mechanisms underlying the formation and maintenance of these gradients are often not well understood. In this work, we investigate whether the presence of a secondary morphogen can increase the robustness of the primary morphogen gradient to perturbation, thereby providing a more stable mechanism for development. We base our model around the interactions of Fibroblast Growth Factor 8 and retinoic acid, which have been shown to act as morphogens in many developmental systems. In particular, we investigate the formation of opposing gradients of these morphogens along the antero-posterior axis of vertebrate embryos, thereby controlling temporal and spatial aspects of axis segmentation and neuronal differentiation

    A mathematical investigation of a clock and wavefront model for somitogenesis

    Get PDF
    Abstract Somites are transient blocks of cells that form sequentially along the antero-posterior axis of vertebrate embryos. They give rise to the vertebrae, ribs and other associated features of the trunk. In this work we develop and analyse a mathematical formulation of a version of the Clock and Wavefront model for somite formation, where the clock controls when the boundaries of the somites form and the wavefront determines where they form. Our analysis indicates that this interaction between a segmentation clock and a wavefront can explain the periodic pattern of somites observed in normal embryos. We can also show that a simplification of the model provides a mechanism for predicting the anomalies resulting from perturbation of the wavefront

    Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    Get PDF
    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes

    Formation of vertebral precursors: Past models and future predictions

    Get PDF
    Disruption of normal vertebral development results from abnormal formation and segmentation of the vertebral precursors, called somites. Somitogenesis, the sequential formation of a periodic pattern along the antero-posterior axis of vertebrate embryos, is one of the most obvious examples of the segmental patterning processes that take place during embryogenesis and also one of the major unresolved events in developmental biology. We review the most popular models of somite formation: Cooke and Zeeman's clock and wavefront model, Meinhardt's reaction-diffusion model and the cell cycle model of Stern and co-workers, and discuss the consistency of each in the light of recent experimental findings concerning FGF-8 signalling in the presomitic mesoderm (PSM). We present an extension of the cell cycle model to take account of this new experimental evidence, which shows the existence of a determination front whose position in the PSM is controlled by FGF-8 signalling, and which controls the ability of cells to become competent to segment. We conclude that it is, at this stage, perhaps erroneous to favour one of these models over the others

    Formation of vertebral precursors: Past models and future predictions

    Get PDF
    Disruption of normal vertebral development results from abnormal formation and segmentation of the vertebral precursors, called somites. Somitogenesis, the sequential formation of a periodic pattern along the antero-posterior axis of vertebrate embryos, is one of the most obvious examples of the segmental patterning processes that take place during embryogenesis and also one of the major unresolved events in developmental biology. We review the most popular models of somite formation: Cooke and Zeeman's clock and wavefront model, Meinhardt's reaction-diffusion model and the cell cycle model of Stern and co-workers, and discuss the consistency of each in the light of recent experimental findings concerning FGF-8 signalling in the presomitic mesoderm (PSM). We present an extension of the cell cycle model to take account of this new experimental evidence, which shows the existence of a determination front whose position in the PSM is controlled by FGF-8 signalling, and which controls the ability of cells to become competent to segment. We conclude that it is, at this stage, perhaps erroneous to favour one of these models over the others

    Macroscopic limits of individual-based models for motile cell populations with volume exclusion

    Get PDF
    Partial differential equation models are ubiquitous in studies of motile cell populations, giving a phenomenological description of events which can be analyzed and simulated using a wide range of existing tools. However, these models are seldom derived from individual cell behaviors and so it is difficult to accurately include biological hypotheses on this spatial scale. Moreover, studies which do attempt to link individual- and population-level behavior generally employ lattice-based frameworks in which the artifacts of lattice choice at the population level are unclear. In this work we derive limiting population-level descriptions of a motile cell population from an off-lattice, individual-based model (IBM) and investigate the effects of volume exclusion on the population-level dynamics. While motility with excluded volume in on-lattice IBMs can be accurately described by Fickian diffusion, we demonstrate that this is not the case off lattice. We show that the balance between two key parameters in the IBM (the distance moved in one step and the radius of an individual) determines whether volume exclusion results in enhanced or slowed diffusion. The magnitude of this effect is shown to increase with the number of cells and the rate of their movement. The method we describe is extendable to higher-dimensional and more complex systems and thereby provides a framework for deriving biologically realistic, continuum descriptions of motile populations

    Power spectra methods for a stochastic description of diffusion on deterministically growing domains

    Get PDF
    A central challenge in developmental biology is understanding the creation of robust spatiotemporal heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed from the deterministic mean-field steady state
    • …
    corecore