554 research outputs found

    Algorithmic Solution for Systems of Linear Equations, in O(mn)\mathcal{O}(mn) time

    Full text link
    We present a novel algorithm attaining excessively fast, the sought solution of linear systems of equations. The algorithm is short in its basic formulation and, by definition, vectorized, while the memory allocation demands are trivial, because, for each iteration, only one dimension of the given input matrix X\mathbf X is utilized. The execution time is very short compared with state-of-the-art methods, exhibiting >×102> \times 10^2 speed-up and low memory allocation demands, especially for non-square Systems of Linear Equations, with ratio of equations versus features high (tall systems), or low (wide systems) accordingly. The accuracy is high and straightforwardly controlled, and the numerical results highlight the efficiency of the proposed algorithm, in terms of computation time, solution accuracy and memory demands. The paper also comprises a theoretical proof for the algorithmic convergence, and we extend the implementation of the proposed algorithmic rationale to feature selection tasks

    A general framework of high-performance machine learning algorithms : application in structural mechanics

    Get PDF
    Data-driven models utilizing powerful artificial intelligence (AI) algorithms have been implemented over the past two decades in different fields of simulation-based engineering science. Most numerical procedures involve processing data sets developed from physical or numerical experiments to create closed-form formulae to predict the corresponding systems’ mechanical response. Efficient AI methodologies that will allow the development and use of accurate predictive models for solving computational intensive engineering problems remain an open issue. In this research work, high-performance machine learning (ML) algorithms are proposed for modeling structural mechanics-related problems, which are implemented in parallel and distributed computing environments to address extremely computationally demanding problems. Four machine learning algorithms are proposed in this work and their performance is investigated in three different structural engineering problems. According to the parametric investigation of the prediction accuracy, the extreme gradient boosting with extended hyper-parameter optimization (XGBoost-HYT-CV) was found to be more efficient regarding the generalization errors deriving a 4.54% residual error for all test cases considered. Furthermore, a comprehensive statistical analysis of the residual errors and a sensitivity analysis of the predictors concerning the target variable are reported. Overall, the proposed models were found to outperform the existing ML methods, where in one case the residual error was decreased by 3-fold. Furthermore, the proposed algorithms demonstrated the generic characteristic of the proposed ML framework for structural mechanics problems.The EuroCC Project (GA 951732) and EuroCC 2 Project (101101903) of the European Commission. Open access funding provided by University of Pretoria.https://link.springer.com/journal/466hj2024Civil EngineeringSDG-09: Industry, innovation and infrastructur

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore