1,060 research outputs found

    Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    Get PDF
    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis

    Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    Get PDF
    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown

    Analysis of testbed airborne multispectral scanner data from Superflux II

    Get PDF
    A test bed aircraft multispectral scanner (TBAMS) was flown during the James Shelf, Plume Scan, and Chesapeake Bay missions as part of the Superflux 2 experiment. Excellent correlations were obtained between water sample measurements of chlorophyll and sediment and TBAMS radiance data. The three-band algorithms used were insensitive to aircraft altitude and varying atmospheric conditions. This was particularly fortunate due to the hazy conditions during most of the experiments. A contour map of sediment, and also chlorophyll, was derived for the Chesapeake Bay plume along the southern Virginia-Carolina coastline. A sediment maximum occurs about 5 nautical miles off the Virginia Beach coast with a chlorophyll maximum slightly shoreward of this. During the James Shelf mission, a thermal anomaly (or front) was encountered about 50 miles from the coast. There was a minor variation in chlorophyll and sediment across the boundary. During the Chesapeake Bay mission, the Sun elevation increased from 50 degrees to over 70 degrees, interfering with the generation of data products

    Tissue eosinophilia and eosinophil degranulation in Riedel's invasive fibrous thyroiditis.

    Get PDF
    The etiology of Riedel's invasive fibrous thyroiditis (IFT) has remained obscure. This rare disorder has been confused in the past with the more common fibrous variant of Hashimoto's disease. The typical histological features of IFT, in particular the presence of an invasive fibrosclerotic process in conjunction with a prominent chronic inflammatory infiltrate, suggest that the release of fibrogenic cytokines and other factors from these cellular infiltrates may play an important role in the pathogenesis of this condition. Our observations in routinely processed tissue sections obtained from patients with documented IFT of striking tissue eosinophilia led us to hypothesize that eosinophils and their products may play a role in the evolution of this disease. Immunofluorescence staining with affinity-purified polyclonal rabbit antibody directed against human eosinophil granule major basic protein revealed marked tissue eosinophilia and abundant extracellular deposition of major basic protein in all specimens from 16 patients with IFT. By contrast, only occasional eosinophils and no extracellular major basic protein were detected in control thyroid tissues obtained from patients with multinodular goiter, Graves' disease, Hashimoto's disease, and normal thyroid tissue. The presence of marked eosinophil infiltration and extracellular major basic protein deposition in IFT and other associated fibrosclerotic conditions suggests a role for eosinophils and their products in propagating the fibrogenesis seen in IFT

    Partly Occupied Wannier Functions

    Get PDF
    We introduce a scheme for constructing partly occupied, maximally localized Wannier functions (WFs) for both molecular and periodic systems. Compared to the traditional occupied WFs the partly occupied WFs posses improved symmetry and localization properties achieved through a bonding-antibonding closing procedure. We demonstrate the equivalence between bonding-antibonding closure and the minimization of the average spread of the WFs in the case of a benzene molecule and a linear chain of Pt atoms. The general applicability of the method is demonstrated through the calculation of WFs for a metallic system with an impurity: a Pt wire with a hydrogen molecular bridge.Comment: 5 pages, 4 figure

    Active and passive microwave measurements in Hurricane Allen

    Get PDF
    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods

    Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Get PDF
    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO<sub>2</sub> dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO<sub>2</sub> fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO<sub>2</sub> and the soil matrix, such as CO<sub>2</sub> diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO<sub>2</sub> or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure

    Calibration of the length of a chain of single gold atoms

    Get PDF
    Using a scanning tunneling microscope or mechanically controllable break junctions it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ~3.6 Angstrom was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the inter-atomic distance before chain rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure
    corecore